• Title/Summary/Keyword: 통기도

Search Result 531, Processing Time 0.029 seconds

Ground Penetrating Radar Profiling of an Unconfined Aquifer for Estimating the Groundwater Surface (지하투과레이다를 이용한 비피압대수층의 지하수면 추정)

  • Park, Inchan;Kim, Jitae;Cho, Woncheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1173-1177
    • /
    • 2004
  • 현재 다양한 분야에서 널리 사용되고 있는 지하투과레이더(Ground Penetrating Radar, GPR)를 이용하여 지하수면 및 함수량을 추정하였다. 비피압대수층 내에서의 얕은 포화대(saturated zone) 깊이을 산정하는 연구(livari and Doolittle, 1994, van Overmeeren, 1994)와 포화대 상부 습윤대(wetting fronts)의 거동를 조사한 연구(Vellidis et al, 1990) 등에 활용된 바 있는 GPR 기숙을 바탕으로 비피압대수층의 통기대와 포화대 내의 함수량 및 지하수면 추정을 위한 기초 실험을 수행하였다. 지하수면 및 함수량의 현장 적용성을 검증하기 위해서는 시간과 경제적인 면에서 비효율적인 점을 고려하여 사질토로 구성된 실험용 토조를 제작하여 건조시 획득된 GPR 자료, 지하수면의 변화에 따른 GPR 이미지를 비교하여 그 적용성을 검토하고 시${\cdot}$공간적 지하수면의 정확한 추정을 위해서 삼차원으로 비교${\cdot}$검토할 수 있도록 하였으며, GPR 자료의 정확성을 검증하기 위해서 토조 하부에 액주계(piezometer)를 설치하였다. 본 연구에서 적용된 GPR 실험은 획득된 이미지의 해석에 다소 어려움이 있지만 토양을 교란시키지 않고 비교적 간편하게 함수랑 및 지하수면의 위치를 파악하는데 매우 효과적이며, 추가적으로 GPR을 이용한 다양한 실험이 수행된다면 GPR 기술은 향후 기존 방법에서 쉽게 판단하기 어려운 시${\cdot}$공간적인 함수량 및 지하수의 분포 특성을 효율적으로 파악하는데 매우 큰 도움을 줄 수 있을 것이다.

  • PDF

A Study on the Air-Vent System of Complex Layer Applied Poly-Urethane Waterproofing Material and Air-Permeability Buffer Sheet (절연용 통기완충 시트와 폴리우레탄 도막 방수재를 복합 적층한 탈기 시스템에 관한 연구)

  • Oh, Sang-Keun;Park, Bong-Kyu;Ko, Jang-Ryeol;Park, Yoon-Chul;Kim, Su-Ryon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.1
    • /
    • pp.139-146
    • /
    • 2002
  • This study deals with the characterizing and the application like as insulation materials in the joint part in concrete surface layer and waterproofing sheet especially for roof slabs. Using steel materials and butil-rubber tape to band waterproofing sheet and concrete surface together before this waterproofing system will be applied. It can be expected to both the curability and the watertightness by coating poly-urethane 2 or 3 times with sheet surface. Therefore this waterproofing system can be possible to protect water without the damage when vapor is going out from concrete and without air pockets because of the difference temperature inside and out. This system particularly consists of air bents and elastic waterproofing sheet considering the physical damage while water can cause purely physical damage. This system is one of the most efficient ways of waterproofing system without air pocket.

Effect of Amino Acids and Dissolved Oxygen on Expression of Invertase in Recombinant Saccharomyces cerevisiae (재조합 Saccharomyces cerevisiae의 Invertase 발현에 미치는 아미노산과 용존산소의 영향)

  • 신해헌;조정섭;변유량;박혜영
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.3
    • /
    • pp.348-354
    • /
    • 1992
  • In order to improve the productivity of invertase by recombinant Saccharomyces cerevisiae containing SUC2 gene, the effect of amino acids and dissolved oxygen concentration on the gene expression was investigated. Optimal concentrations of leucine and histidine for cell growth and cloned gene expression were 0.03 gig and 0.04 gig, respectively, expressed as the ratio of amino acid/glucose. The lack or excess of leucine and histidine has inhibitory effect on cell growth and invertase expression. In batch culture, the less aeration was, the higher invertase activity was. In continuous culture at a dilution rate of 0.09 h 1 with controlled dissolved oxygen tension, invertase activity increased dramatically at DOT levels below 5% air saturation, and a maximum activity of 215.54 KUlg cell was obtained under unaerated condition.

  • PDF

An Experimental Study on Ventilation and Thermal Performance of Passive Ventilation Building Envelopes (패시브환기외피의 통기 및 열성능에 관한 실험적 연구)

  • Yoon, Seong-Hwan;Lee, Tae-Cheol;Kang, Jung-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.711-717
    • /
    • 2011
  • In this study, 5 types of PVS(Passive ventilation system) units are made and experimented its ventilation performance, thermal performance according to open rate and hole diameter of perforated aluminum plane. Results are as follows. 1) The ventilation performance increases approximately 50~70% according by the open rate of PVS increasing. Also, the ventilation performance increases about 2%~12% according by the hole diameter of PVS increasing. 2) In winter temperature/pressure condition(in : $20^{\circ}C$, out : $-2^{\circ}C/{\Delta}P$ : 0.2~5.0Pa) the temperature of inflow air decreases according by the open rate of PVS increasing. Heat gain performance decreases 10.1%, 25.6% when open rate increases 3) In the same condition, Heat gain performance decreases 18.3%, 18.8% according by the hole diameter of PVS increasing.

Effects of Water-Repellent on the Physical Properties of Water Paint (발수제가 수성페인트의 물리적 성능에 미치는 영향)

  • Lee, Soo-Yong;Nam, Gee-Yung;Kim, Ji-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.259-265
    • /
    • 2014
  • This study is to analyze durability of water-repellent paints mixed with water-repellents as outer surface finishing materials, and evaluate its feasibility. General functions and water-repelling effects were tested, and the feasibility was evaluated based on the test results. The experimental results of heat conduction durability, air permeability, absorption, and bond strength suggested that water-repellent paints mixed with water-repellents were suitable for finishing materials. Considering overall general durability performances, stable mixing ratios were 2, 5, and 8%.

A Study on Ventilation and Heat Transfer Coefficient of Passive Ventilation Skin (패시브환기외피의 통기성능 및 열관류율에 대한 연구)

  • Lee, Tae-Cheol;Son, Yu-Nam;Yoon, Seong-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.9
    • /
    • pp.679-684
    • /
    • 2012
  • This paper aims to evaluate performances of ventilation and insulation of 6types PVS(Passive ventilation skin) by numerical simulation. The results are as follows. 1) The result of Performance of ventilation by pressure difference, it was shown that the amount of ventilation changed bigger under 1Pa and amount of ventilation increased according to increase opening area (${\alpha}A$). Although same opening area of PVS, it can predict that pressure differences cause ventilation differences. 2) In case of same opening area of PVS, however, it was changed the amount of ventilation each types of PVS that is distinguished opening area by flow coefficient. 3) Dynamic U-value that represents performance of insulation PVS was similar change upper ${\alpha}A40\;cm^2/m^2$, great change in casse of 0.1 Pa pressure difference. In case of ${\alpha}A10\;cm^2/m^2$, it was changed bigger under 0.3 Pa pressure difference, ${\alpha}A20\;cm^2/m^2$ of PVS was changed under 0.2 Pa pressure difference.

Effects of Water Potential on Plant Growth and Aerenchyma Development in Adlay(Coix lacryma-jobi L. var. mayuen) (토양수분 차이가 율무의 생장과 통기조직 발달에 미치는 영향)

  • 김정태;박희생;김성만;이성환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.778-782
    • /
    • 1997
  • Effects of different water potential on the growth and aerenchyma development of Adlay(Coix lacryma-jobi L. var. mayuen) were studied under every 3 days intermittent irrigation as a control at different growth stages, flooded pot condition and drought. Adlay could not germinate in the anaerobic soil conditions with excessive moisture while it wasn't inflicted with moisture damage after sprouting. Sprouted adlay can grow under flooded soil moisture condition because it's root has orthostichy cell, ventilating structure and cortex. Proping or ventilating roots were generated from adlay grown under flooded pots. Drought damage inflicted at the heading stage was the most severe.

  • PDF

Lab-scale experimental setup to evaluate the performance of band driers (통기밴드식 건조기의 성능 평가 실험 장치)

  • Seongmin, Park;Sang Hyun, Oh;Sung Il, Kim;Wonjung, Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.36-41
    • /
    • 2022
  • Drying process is involved in the production of various products including food, textiles, paper, pharmaceuticals, and batteries. Phase change of liquid to vapor generally requires enormous thermal energy, so in order to save energy, it is advantageous to develop an appropriate drier and use it under appropriate operating conditions, depending on the characteristics of materials. However, due to the complex, multiscale heat and mass transfer occurring during drying processes, predictions of appropriate drying conditions before actual operation are not easily achieved, leading to challenges in designing driers. Here, we developed a lab-scale experimental setup to evaluate the performance of band dries. The experimental setup was used to measure the moisture content and temperature change in the materials being dried in a belt dryer. Experimental results obtained using our lab-scale setup allow us to predict the performance of a full-scale band drier, thus suggesting a practical framework for predicting the drying process of various materials and developing band driers.

Turion as Dormant Structure in Spirodela polyrhiza (개구리밥 휴면구조 잠아의 구조적 특성)

  • Kwak, Mi-Young;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.38 no.4
    • /
    • pp.307-314
    • /
    • 2008
  • Hydrophytes such as Spirodela polyrhiza form dormant turions to withstand cold winters. The turion is an anatomically distinct structure from which a vegetative frond arises later during germination. The turions sink to the bottom of the pond when temperatures drop and remain there throughout the winter. In the spring, they float to the surface and germinate into a new frond from the turion primordium. Unlike fronds, turions are known to possess small aerenchyma, starch grains, and relatively dense cytoplasm. These features allow the turions to survive the cold winter season at the bottom of the pond. Spirodela polyrhiza has been investigated previously to a great extent, especially in its physiological, biochemical and ecological attributes. However, a little is known about the structural features of the frond and turion during turion development. Thus, the aim of the present study was to reveal the structural characteristics of the frond and turion with regard to tissue differentiation, aerenchyma development, starch distribution, and ultrastructure, with the use of electron microscopy. A moderate degree of mesophyll tissue differentiation was found in the frond, whereas the turion did not exhibit such differentiation. Within the frond tissue, approximately $37{\sim}45%$ of the cellular volume was occupied by a large aerenchyma, but only $9{\sim}15%$ was taken up by the aerenchyma in the turion. The turion cells, especially those of the turion primordium, were derived from frond cells, and contained cytoplasm. Their cytoplasm was densely packed with plastids, mitochondria, endoplasmic reticulum, Golgi bodies, and microtubules. Plasmodesmata were also well developed within these cells. The most striking feature observed was the distribution of starch grains within the plastids of turion cells. Before the turion sank to the bottom of the pond, a considerable amount of starch accumulated in the plastid stroma. The starch grains dissolved when temperatures rose in the spring, and this promptly provided the nutrients which the primordium needed for turion germination. The turion therefore, was an appropriate dormant structure for free-floating, reduced hydrophytes like Spirodela polyhriza due to its small aerenchyma and large starch grains that aided in the purpose of sinking below the surface of the water to survive cold winters. The new fronds that arose from such turions grew rapidly in the spring, beginning the new life cycle.

Enhanced Production of Gellan by Sphingomonas paucibilis NK-2000 with Shifts in Agitation Speed and Aeration Rate after Glucose Feeding into the Medium (Sphingomonas paucibilis NK-2000 균주가 생산하는 젤란의 생산 농도 향상을 위한 포도당 첨가 및 교반속도와 통기량 변화 방법의 최적화)

  • Lee, Nam-Kyu;Seo, Hyung-Phil;Cho, Young-Bai;Son, Chang-Woo;Gao, Wa;Lee, Jin-Woo
    • Journal of Life Science
    • /
    • v.20 no.6
    • /
    • pp.811-818
    • /
    • 2010
  • Optimal agitation speed and aeration rate for the production of gellan by Sphingomnas paucibilis NK2000 in a 7 l bioreactor were found to be 400 rpm and 1.0 vvm. The best time for glucose feeding into the medium for enhanced production of gellan by S. paucibilis NK2000 was 36 hr after cultivation. The concentrations of gellan produced by S. paucibilis NK2000 from 1) 20.0 g/l glucose without additional feeding, 2) 20.0 g/l glucose with feeding of 200.0 g/l glucose at 36 hr, in which the final concentration in the medium was 10.0 g/l, 3) 20 g/l glucose with feeding of 200.0 g/l glucose and a shift in an agitation speed from 400 to 600 rpm, 4) 20.0 g/l glucose with feeding of 200.0 g/l glucose at 36 hr and shifts in an agitation speed from 400 to 600 rpm and an aeration rate from 1.0 to 1.5 vvm, 5) and 20.0 g/l glucose with feeding of 200.0 g/l glucose at 36 hr and shifts in an agitation speed from 400 to 600 rpm and an aeration rate from 1.0 to 2.0 vvm, were 5.19, 5.74, 6.73, 7.93, and 9.40 g/l, respectively, and their conversion rates from glucose were 26.0, 19.1, 22.4, 26.4, and 31.3%, respectively. Compared to those developed using a normal process, production of gellan by S. paucibilis NK2000 from 20.0 g/l glucose was 1.81 times higher, and and its conversion rate was 1.20 times higher when the optimized process developed in this study was used.