Journal of the Korean Society for Aeronautical & Space Sciences
/
v.46
no.1
/
pp.32-40
/
2018
In this research, a method of deriving statistical weight prediction formula which is used during the conceptual design phase was studied and it was programmed using Microsoft Excel and verified by applying to jet transport aircraft. The database was built while referencing the variables of conventional wing weight estimation formulas and it was used for modeling the jet transport wing weight regression equation. The model was evaluated using the K-fold cross validation method to solve the overfitting problem of the model.
Journal of Korean Tunnelling and Underground Space Association
/
v.26
no.1
/
pp.39-58
/
2024
Tunnel Boring Machines (TBM) use multiple disc cutters to excavate tunnels through rock. These cutters wear out due to continuous contact and friction with the rock, leading to decreased cutting efficiency and reduced excavation performance. The rock's abrasivity significantly affects cutter wear, with highly abrasive rocks causing more wear and reducing the cutter's lifespan. The Cerchar Abrasivity Index (CAI) is a key indicator for assessing rock abrasivity, essential for predicting disc cutter life and performance. This study aims to develop a new method for effectively estimating CAI using rock strength, petrological characteristics, linear regression, and machine learning. A database including CAI, uniaxial compressive strength, Brazilian tensile strength, and equivalent quartz content was created, with additional derived variables. Variables for multiple linear regression were selected considering statistical significance and multicollinearity, while machine learning model inputs were chosen based on variable importance. Among the machine learning prediction models, the Gradient Boosting model showed the highest predictive performance. Finally, the predictive performance of the multiple linear regression analysis and the Gradient Boosting model derived in this study were compared with the CAI prediction models of previous studies to validate the results of this research.
KSCE Journal of Civil and Environmental Engineering Research
/
v.4
no.2
/
pp.1-11
/
1984
This aims of this study is to analyse the correlationship between traffic accident s and traffic characteristic variables in at-grade intersections of urban area, to build up an accident forecasting model and to propose an evaluation method of hazardous at-grade intersections. The accident forecasting model is formulated by the use of residual indexes that is selected by principal component analysis and its statistical significance is tested by step-wise regression analysis. Effective countermeasures for safety can be established on the basis of identifying high accident intersections, because the validity of this model was examined and found to coincide with real world situations.
Software Development is converting from structural to object oriented method. The later software development prefers the iterative process applications, not aterfall process and based on use case model, the requirements are expressed and based on this, analysis, design and coding are accomplished. Therefore, size of the software to be developed is estimated basing on use case and it is only possible to maintain the project success by estimating development effort, cost and development period. Even though development effort estimation models related current use case point. there is no appropriate development effort estimating. This paper shows, as a result of applying the development effort estimating model about UCP to the growth curve, a superior performance improvement to current statistical models. Therefore, estimation of development effort by applying this model, project development maintenance can be appropriately carried out.
The shear strength has been managed as an important factor in soil mechanics. The shear strength estimation model was developed to evaluate the shear strength using only a few soil properties by the linear regression analysis model which is one of the statistical methods. The shear strength is divided into two part; one is the internal friction angle (${\phi}$) and the other is the cohesion (c). Therefore, some valid soil factors among the results of soil tests are selected through the correlation analysis using SPSS and then the model are formulated by the linear regression analysis based on the relationship between factors. Also, the developed model is compared with the result of direct shear test to prove the rationality of model. As the results of analysis about relationship between soil properties and shear strength, the internal friction angle is highly influenced by the void ratio and the dry unit weight and the cohesion is mainly influenced by the void ratio, the dry unit weight and the plastic index. Meanwhile, the shear strength estimated by the developed model is similar with that of the direct shear test. Therefore, the developed model may be used to estimate the shear strength of soils in the same condition of study area.
This study identifies major features in water supply and introduces important factors in water services based on the information from data mining analysis of water quantity and water pressure measured from sensors. It also suggests more accurate methods using multiple regression analysis and neural network in predicting short term prediction of water demand in water service. A small block of a county is selected for the data collection and tests. There isa water demand on business such as public offices and hospitalstoo in this area. Real stream data from sensors in this area is collected. Among 2,728 data sets collected, 2,632 sets are used for modelling and 96 sets are used for testing. The shows that neural network is better than multiple regression analysis in their prediction performance.
This study developed a prediction model of debris flow to predict a landslide probability on natural terrain composed of the Tertiary sedimentary and volcanic rocks using a logistic regression analysis. The landslides data were collected around Pohang, Gyeongbuk province where more than 100 landslides were occurred in 1998. Considered with basic characteristics of the logistic regression analysis, field survey and laboratory soil tests were performed for both slided points and not-slided points. The final iufluential factors on landslides were selected as six factors by the logistic regression analysis. The six factors are composed of two topographic factors and four geologic factors. The developed landslide prediction model has more than $90\%$ of prediction accuracy. Therefore, it is possible to make probabilistic and quantitative prediction of landslide occurrence using the developed model in this study area as well as the previously developed model for metamorphic and granitic rocks.
The uniaxial compressive strength (UCS) is an important factor in the design and construction of surface and underground structures. However, the method employed to measure UCS is time consuming and expensive to apply in the field. Therefore, we developed a model to estimate UCS based on a few properties using linear regression analysis, which is a statistical method. To develop the model, valid factors from the test results were selected from a correlation analysis using a statistical program, and the model was formulated by linear regression based on the relationships among factors. UCS estimates derived from the model were compared with the results of UCS tests, to assess the reliability of the model. The relationship between rock properties and UCS indicates that the factors with the greatest influence on UCS are point load strength and shape facto r. The UCS values obtained using the model are in good agreement with the results of the UCS test. Therefore, the developed model may be used to estimate the UCS of rocks in regions with similar conditions to those of the present study area.
Juhyoung Sung;Sungyoon Cho;Da-Eun Jung;Jongwon Kim;Jeonghwan Park;Kiwon Kwon;Young Myoung Ko
Journal of Internet Computing and Services
/
v.24
no.1
/
pp.61-69
/
2023
Recently, as the fishery resources are depleted, expectations for productivity improvement by 'rearing fishery' in land farms are greatly rising. In the case of land farms, unlike ocean environments, it is easy to control and manage environmental and breeding factors, and has the advantage of being able to adjust production according to the production plan. On the other hand, unlike in the natural environment, there is a disadvantage in that operation costs may significantly increase due to the artificial management for fish growth. Therefore, profit maximization can be pursued by efficiently operating the farm in accordance with the planned target shipment. In order to operate such an efficient farm and nurture fish, an accurate growth prediction model according to the target fish species is absolutely required. Most of the growth prediction models are mainly numerical results based on statistical analysis using farm data. In this paper, we present a growth prediction model from a stochastic point of view to overcome the difficulties in securing data and the difficulty in providing quantitative expected values for inaccuracies that existing growth prediction models from a statistical point of view may have. For a stochastic approach, modeling is performed by introducing a Gaussian process regression method based on water temperature, which is the most important factor in positive growth. From the corresponding results, it is expected that it will be able to provide reference values for more efficient farm operation by simultaneously providing the average value of the predicted growth value at a specific point in time and the confidence interval for that value.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2007.12a
/
pp.259-260
/
2007
The forecast of a container traffic has been very important for port plan and development Generally, statistic methods, such as regression analysis, ARIMA, have been much used for traffic forecasting. Recent research activities in forecasting with artificial neural networks(ANNs) suggest tint ANNs am be a promising alternative to the traditional linear methods. In this paper, a hybrid methodology that combines both ARIMA and ANN models is proposed to take advantage of the unique strength of ARIMA and ANN models in linear and nonlinear modeling. The results with port traffic data indicate tint effectiveness can differ according to the ch1racteristics of ports.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.