• Title/Summary/Keyword: 통계적 패턴인식

Search Result 84, Processing Time 0.024 seconds

Developing English Language Learning Tools Adaptable to Users' Personality (사용자 성격 적응형 영어학습 도구에 관한 연구)

  • Lee, Inui;Kwon, Soonil;Lee, Kyoung-Rang;Kim, Soo-Yoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.1649-1652
    • /
    • 2012
  • 본 연구에서는 사용자의 성격패턴을 사용자의 대화음성 정보만으로 자동 분류할 수 있는 방법과 이를 기반으로 사용자의 성격 맞춤형 학습전략을 적용하는 애플리케이션을 개발하는 것을 목적으로 하였다. 음성대화 속의 발화된 말의 빠르기(speech rate)나 말소리의 크기, 기본주파수(fundamental frequency)의 값과 그들의 변화패턴, 그리고 묵음구간의 여러 가지 통계적 정보 같은 비언어적 단서를 활용하여 성격패턴을 최고 86.3% 까지 정확하게 인식해 낼 수 있었다. 또한 성격 별 영어단어 학습방법을 개발하여 사전 및 사후테스트를 기반으로 실험한 결과 약 24% 성적 향상을 보였다. 이 연구를 통해 확보되는 원천기술은 각종 에듀테인먼트 콘텐츠에는 물론 로봇과의 대화시스템, 치료나 재활을 위한 기능성 콘텐츠 등에 유용하게 사용될 것이다.

Video-based Facial Emotion Recognition using Active Shape Models and Statistical Pattern Recognizers (Active Shape Model과 통계적 패턴인식기를 이용한 얼굴 영상 기반 감정인식)

  • Jang, Gil-Jin;Jo, Ahra;Park, Jeong-Sik;Seo, Yong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.139-146
    • /
    • 2014
  • This paper proposes an efficient method for automatically distinguishing various facial expressions. To recognize the emotions from facial expressions, the facial images are obtained by digital cameras, and a number of feature points were extracted. The extracted feature points are then transformed to 49-dimensional feature vectors which are robust to scale and translational variations, and the facial emotions are recognized by statistical pattern classifiers such Naive Bayes, MLP (multi-layer perceptron), and SVM (support vector machine). Based on the experimental results with 5-fold cross validation, SVM was the best among the classifiers, whose performance was obtained by 50.8% for 6 emotion classification, and 78.0% for 3 emotions.

Effective Line Detection of Steel Plates Using Eigenvalue Analysis (고유값 분석을 이용한 효과적인 후판의 직선 검출)

  • Park, Sang-Hyun;Kim, Jong-Ho;Kang, Eui-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1479-1486
    • /
    • 2011
  • In this paper, a simple and robust algorithm is proposed for detecting straight line segments in a steel plate image. Line detection from a steel plate image is a fundamental task for analyzing and understanding of the image. The proposed algorithm is based on small eigenvalue analysis. The proposed approach scans an input edge image from the top left comer to the bottom right comer with a moving mask. A covariance matrix of a set of edge pixels over a connected region within the mask is determined and then the statistical and geometrical properties of the small eigenvalue of the matrix are explored for the purpose of straight line detection. Before calculating the eigenvalue, each line segment is separated from the edge image where several line segments are overlapped to increase the accuracy of the line detection. Additionally, unnecessary line segments are eliminated by the number of pixels and the directional information of the detected line edges. The respects of the experiments emphasize that the proposed algorithm outperforms the existing algorithm which uses small eigenvalue analysis.

Context Recognition Using Environmental Sound for Client Monitoring System (피보호자 모니터링 시스템을 위한 환경음 기반 상황 인식)

  • Ji, Seung-Eun;Jo, Jun-Yeong;Lee, Chung-Keun;Oh, Siwon;Kim, Wooil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.343-350
    • /
    • 2015
  • This paper presents a context recognition method using environmental sound signals, which is applied to a mobile-based client monitoring system. Seven acoustic contexts are defined and the corresponding environmental sound signals are obtained for the experiments. To evaluate the performance of the context recognition, MFCC and LPCC method are employed as feature extraction, and statistical pattern recognition method are used employing GMM and HMM as acoustic models, The experimental results show that LPCC and HMM are more effective at improving context recognition accuracy compared to MFCC and GMM respectively. The recognition system using LPCC and HMM obtains 96.03% in recognition accuracy. These results demonstrate that LPCC is effective to represent environmental sounds which contain more various frequency components compared to human speech. They also prove that HMM is more effective to model the time-varying environmental sounds compared to GMM.

EPS Gesture Signal Recognition using Deep Learning Model (심층 학습 모델을 이용한 EPS 동작 신호의 인식)

  • Lee, Yu ra;Kim, Soo Hyung;Kim, Young Chul;Na, In Seop
    • Smart Media Journal
    • /
    • v.5 no.3
    • /
    • pp.35-41
    • /
    • 2016
  • In this paper, we propose hand-gesture signal recognition based on EPS(Electronic Potential Sensor) using Deep learning model. Extracted signals which from Electronic field based sensor, EPS have much of the noise, so it must remove in pre-processing. After the noise are removed with filter using frequency feature, the signals are reconstructed with dimensional transformation to overcome limit which have just one-dimension feature with voltage value for using convolution operation. Then, the reconstructed signal data is finally classified and recognized using multiple learning layers model based on deep learning. Since the statistical model based on probability is sensitive to initial parameters, the result can change after training in modeling phase. Deep learning model can overcome this problem because of several layers in training phase. In experiment, we used two different deep learning structures, Convolutional neural networks and Recurrent Neural Network and compared with statistical model algorithm with four kinds of gestures. The recognition result of method using convolutional neural network is better than other algorithms in EPS gesture signal recognition.

Music Recognition by Partial Template Matching (부분적 템플릿 매칭을 활용한 악보인식)

  • Yoo, Jae-Myeong;Kim, Gi-Hong;Lee, Guee-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.11
    • /
    • pp.85-93
    • /
    • 2008
  • For music score recognition, several approaches have been proposed including shape matching, statistical methods, neural network based methods and structural methods. In this paper, we deal with recognition for low resolution images which are captured by the digital camera of a mobile phone. Considerable distortions are included in these low resolution images, so when existing technology is used, many problems appear. First, captured images are not stable in the sense that they contain lots of distortions or non-uniform illumination changes. Therefore, notes or symbols in the music score are damaged and recognition process gets difficult. This paper presents recognition technology to overcome these problems. First, musical note to head, stick, tail part are separated. Then template matching on head part of musical note, and remainder part is applied. Experimental results show nearly 100% recognition rate for music scores with single musical notes.

Performance Analysis of Speech Parameters and a New Decision Logic for Speaker Recognition (화자인식을 위한 음성 요소들의 성능분석 및 새로운 판단 논리)

  • Lee, Hyuk-Jae;Lee, Byeong-Gi
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.7
    • /
    • pp.146-156
    • /
    • 1989
  • This paper discusses how to choose speech parameters and decision logics to improve the performance of speaker recognition systems. It also considers the influence of the reference patterns on the speaker recognition. It is observed from the performance analysis based on LPSs, PARCOR coefficients and LPC-cepstrum coefficients that LPC-cepstrum coefficients are superior to the others in speaker recognition without regard to the reference patterns. In order to improve the recognition performance, a new decision logic is proposed based on a generalized-distance concept. It differs from the existing methods in that it considers the statistics of customer and impostors at the same time. It turns out from a speaker verification test that the proposed decision logic ferforms better than the existing ones.

  • PDF

Real-time Hand Pose Recognition Using HLF (HLF(Haar-like Feature)를 이용한 실시간 손 포즈 인식)

  • Kim, Jang-Woon;Kim, Song-Gook;Hong, Seok-Ju;Jang, Han-Byul;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.897-902
    • /
    • 2007
  • 인간과 컴퓨터간의 전통적인 인터페이스는 인간이 요구하는 다양한 인터페이스를 제공하지 못한다는 점에서 점차 사용하기 불편하게 되었고 이는 새로운 형태의 인터페이스에 대한 요구로 이어지게 되었다. 본 논문에서는 이러한 추세에 맞추어 카메라를 통해 인간의 손 제스처를 인식하는 새로운 인터페이스를 연구하였다. 손은 자유도가 높고 3차원의 view direction에 의해 형상이 매우 심하게 변한다. 따라서 윤곽선 기반방법과 같은 2차원으로 투영된 영상에서 contour나 edge의 정보로 손 제스처를 인식하는 데는 한계가 있다. 그러나 모델기반 방법은 3차원 정보를 이용하기 때문에 손 제스처를 인식하는데 좋으나 계산량이 많아 실시간으로 처리하기가 쉽지 않다. 이러한 문제점을 해결하기 위해 손 형상에 대한 대규모 데이터베이스를 구성하고 정규화된 공간에서 Feature 간의 연관성을 파악하여 훈련 데이터 모델을 구성하여 비교함으로써 실시간으로 손 포즈를 구별할 수 있다. 이러한 통계적 학습 기반의 알고리즘은 다양한 데이터와 좋은 feature의 검출이 최적의 성능을 구현하는 것과 연관된다. 따라서 배경으로부터 노이즈를 최대한 줄이기 위해 피부의 색상 정보를 이용하여 손 후보 영역을 검출하고 검출된 후보 영역으로부터 HLF(Haar-like Feature)를 이용하여 손 영역을 검출한다. 검출된 손 영역으로부터 패턴 분류 과정을 거쳐 손 포즈를 인식 하게 된다. 패턴 분류 과정은 HLF를 이용하여 손 포즈를 인식하게 되는데 미리 학습된 각 포즈에 대한 HLF를 이용하여 손 포즈를 인식하게 된다. HLF는 Violar가 얼굴 검출에 적용한 것으로 얼굴 검출에 좋은 결과를 보여 주었으며, 이는 적분 이미지로부터 추출한 HLF를 이용한 Adaboost 학습 알고리즘을 사용하였다. 본 논문에서는 피부색의 색상 정보를 이용 배경과 손 영상을 최대한 분리하여 배경의 대부분이 Adaboost-Haar Classifier의 첫 번째 스테이지에서 제거되는 방법을 이용하여 그 성능을 더 향상 시켜 손 형상 인식에 적용하였다.

  • PDF

Aberration Extraction Algorithm for LCD Defect Detection (대면적 LCD 결함검출을 위한 수차량 추출 알고리즘)

  • Ko, Jung-Hwan;Lee, Jung-Suk;Won, Young-Jin
    • 전자공학회논문지 IE
    • /
    • v.48 no.4
    • /
    • pp.1-6
    • /
    • 2011
  • In this paper we show the LCD simulator for defect inspection using image processing algorithm and neural network. The defect inspection algorithm of the LCD consists of preprocessing, feature extraction and defect classification. Preprocess removes noise from LCD image, using morphology operator and neural network is used for the defect classification. Sample images with scratch, pinhole, and spot from real LCD color filter image are used. From some experiments results, the proposed algorithms show that defect detected and classified in the ratio of 92.3% and 94.5 respectively. Accordingly, in this paper, a possibility of practical implementation of the LCD defect inspection system is finally suggested.

LCD Defect Detection using Neural-network based on BEP (BEP기반의 신경회로망을 이용한 LCD 패널 결함 검출)

  • Ko, Jung-Hwan
    • 전자공학회논문지 IE
    • /
    • v.48 no.2
    • /
    • pp.26-31
    • /
    • 2011
  • In this paper we show the LCD simulator for defect inspection using image processing algorithm and neural network. The defect inspection algorithm of the LCD consists of preprocessing, feature extraction and defect classification. Preprocess removes noise from LCD image, using morphology operator and neural network is used for the defect classification. Sample images with scratch, pinhole, and spot from real LCD color filter image are used. From some experiments results, the proposed algorithms show that defect detected and classified in the ratio of 92.3% and 94.5 respectively. Accordingly, in this paper, a possibility of practical implementation of the LCD defect inspection system is finally suggested.