• 제목/요약/키워드: 통계적 축소

검색결과 72건 처리시간 0.022초

통계적 비선형 차원축소기법에 기반한 잡음 환경에서의 음성구간검출 (Voice Activity Detection in Noisy Environment based on Statistical Nonlinear Dimension Reduction Techniques)

  • 한학용;이광석;고시영;허강인
    • 한국정보통신학회논문지
    • /
    • 제9권5호
    • /
    • pp.986-994
    • /
    • 2005
  • 본 논문은 잡음 환경하에서 적응 가능한 음성구간검출를 구축하기 위하여 우도기반의 음성 특징 파라미터의 비선형 차원축소 방법을 제안한다. 제안하는 차원축소 방법은 음성/비음성 클래스에 대한 가우시아 확률 밀도 함수의 비선형적 우도값을 새로운 특징으로 취하는 방법이다. 음성구간검출기의 음성/비음성 결정은 우도비 검증(LRT)의 통계적 방법을 이용하며, 선형판별분석(LDA)에 의한 차원축소 결과와 성능을 비교한다. 실험 결과 제안된 차원 축소 방법으로 음성 특징 파라미터를 2차원으로 축소한 결과가 원래 특징백터의 차원에서의 결과와 대등한 성능을 확인하였다.

대용량 문서분류에서의 비선형 주성분 분석을 이용한 특징 추출 (Feature Selection with Non-linear PCA in Text Categorization)

  • 신형주;장병탁;김영택
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.146-148
    • /
    • 1999
  • 문서분류의 문제점 중의 하나는 사용하는 데이터의 차원이 매우 크다는 것이다. 그러므로 문서에서 필요한 단어만을 자동적으로 추출하여 문서데이터의 차원을 축소하는 작업이 문서분류에서는 필수적이다. DF(Document Frequency)는 문서의 차원축소의 대표적인 통계적 방법 중 하나인데, 본 논문에서는 문서의 차원축소에 DF와 주성분 분석(PCA)을 비교하여 주성분 분석이 문서의 차원축소에 적합함을 실험적으로 보인다. 그리고 비선형 주성분 분석(nonlinear PCA) 방법 중 locally linear PCA와 kenel PCA를 적용하여 비선형 주성분 분석을 이용하여 문서의 차원을 줄이는 것이 선형 주성분 분석을 이용하는 것 보다 문서분류에 더 적합함을 실험적으로 보인다.

  • PDF

음성 구간 검출기의 실시간 적응화를 위한 특징 벡터의 차원 축소 방법 (Dimension Reduction Method of Feature Vector for Real-Time Adaptation of Voice Activity Detection)

  • 김평환;한학용;김창근;고시영;허강인
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2004년도 춘계학술발표대회 논문집 제23권 1호
    • /
    • pp.53-56
    • /
    • 2004
  • 본 논문은 잡음 환경하에서 특징 벡터의 차원 축소를 통한 음성 구간 검출에 관한 연구이다. 음성/비음성 분류는 통계적 모델을 이용한 분류-기반 방법을 사용한다. 검출기에서 실시간 적응화를 위해 우도-기반의 특징 벡터에 대한 차원 축소 방법을 제안한다. 이 방법은 음성/비음성 클래스에 대한 가우시안 확률 밀도 함수에 의한 비선형적 우도값을 새로운 특징으로 취하는 방법이다. 음성/비음성 결정은 우도비 검증(Likelihood Ratio Test)의 방법을 이용하며, LDA(Linear Discriminant Analys)에 의한 축소 결과와 성능을 비교한다. 실험 결과 제안된 차원 축소 방법을 통하여 2차원으로 축소된 특징 벡터가 고차원에서의 결과와 대등함을 확인하였다.

  • PDF

통계적 축소기법을 이용한 유역단위 기후변화 시나리오 생성 (Generation of Basin Scale Climate Change Scenario Using Statistical Down Scaling Techniques)

  • 이용원;경민수;김형수;김병식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1250-1253
    • /
    • 2009
  • 기후변화가 수자원에 미치는 영향을 평가하는데 있어서 주로 기후모형인 Global Climate Model (GCM)이 사용되고 있다. 그러나 이러한 기후모형의 공간적 해상도는 $3^{\circ}{\sim}4^{\circ}$ 정도로 한반도의 경우 바다로 묘사되기도 한다. 따라서 GCM을 이용해서 기후변화가 유역단위 수자원에 미치는 영향을 평가하기 위해서는 일반적으로 축소기법이 사용되고 있다. 현재까지 다양한 축소기법이 개발되었으며, 대표적인 모형으로는 SDSM(Statistical Down-Scaling Model)과 LARS-WG(The Long Ashton Research Station Weather Generator)이 있다. 이에 본 연구에서는 SDSM, LARS-WG와 함께 최근에 축소기법으로 사용되고 있는 인공신경망 기법을 이용해서 CCCMA(Canadian Centre for Climate Modeling and Analysis)에서 일 단위로 모의한 CGCM3 A2 시나리오를 기반으로 우포늪의 강우 및 온도시나리오를 구축하였다. 대상 지점인 우포늪은 경상남도 창녕군 우포늪(위도 $35^{\circ}$33', 경도 $128^{\circ}$25')에 위치하고 있으며, 모의 기간은 CASE1의 경우 현재, CASE2는 2050$^{\sim}$ 2080년, CASE3는 2080년$^{\sim}$2100년으로 각각 구분하여 축소기법을 적용하였다. 축소결과 축소기법에 따라 일정정도 차이를 보이기는 하였으나 강우와 온도 모두 증가하게 됨을 확인하였다.

  • PDF

통계적 축소법을 이용한 한반도 인근해역의 미래 표층수온 추정 (Prediction of Future Sea Surface Temperature around the Korean Peninsular based on Statistical Downscaling)

  • 함희정;김상수;윤우석
    • 산업기술연구
    • /
    • 제31권B호
    • /
    • pp.107-112
    • /
    • 2011
  • Recently, climate change around the world due to global warming has became an important issue and damages by climate change have a bad effect on human life. Changes of Sea Surface Temperature(SST) is associated with natural disaster such as Typhoon and El Nino. So we predicted daily future SST using Statistical Downscaling Method and CGCM 3.1 A1B scenario. 9 points of around Korea peninsular were selected to predict future SST and built up a regression model using Multiple Linear Regression. CGCM 3.1 was simulated with regression model, and that comparing Probability Density Function, Box-Plot, and statistical data to evaluate suitability of regression models, it was validated that regression models were built up properly.

  • PDF

고품질 내장형 음성합성 시스템을 위한 음성합성 DB구현 (The implementation of database for high quality Embedded Text-to-speech system)

  • 권오일
    • 대한전자공학회논문지SP
    • /
    • 제42권4호
    • /
    • pp.103-110
    • /
    • 2005
  • 음성 데이터베이스는 TTS 시스템에서 가장 중요한 요소 중의 하나이다. 특히, 내장형 TTS 시스템에서는 서버형 TTS 시스템에서보다 좀 더 작은 데이터베이스를 필요로 한다. 이러한 이유로, 음성합성 데이터의 압축과 통계적 축소과정의 비중은 내장형 TTS 시스템에서 아주 중요한 항목이라고 말할 수 있다. 그러나 이러한 압축과 통계적 축소과정은 합성음질의 저하를 유발시킨다. 본 논문에서는 고품질 내장형 TTS 시스템에서의 데이터 구축방법을 제안하며, MOS 테스트를 통한 합성음질을 검증한다.

우리나라 로컬푸드 원칙의 인식구조와 준수실태 (The perception and compliance of local food principles in Korea)

  • 이관률;송주연;허남혁
    • 한국지역지리학회지
    • /
    • 제19권4호
    • /
    • pp.567-579
    • /
    • 2013
  • 본 연구의 목적은 최근 사회적으로 큰 흐름으로 자리잡고 있는 로컬푸드 원칙에 대한 인식도와 준수도를 실증적으로 규명하는 것이다. 본 연구의 주요내용을 요약하면 다음과 같다. 첫째, 로컬푸드 인식도에서는 신뢰관계, 지역생산 지역소비가 가장 중요한 요인으로 나타났고, 상대적으로 친환경성의 중요도는 낮게 나타났다. 이는 종사자와 전문가에서 통계적 차이를 나타내지 않는다. 따라서 로컬푸드 개념에서는 공간적 측면과 사회적 측면의 구성요소가 모두 중요하다. 둘째, 로컬푸드 준수도에서는 신뢰관계와 유통단계의 축소는 비교적 잘 지켜지는 반면, 친환경성과 이동거리는 상대적으로 잘 지켜지지 않는 것으로 나타났다. 준수도의 경우 종사자와 전문가의 인식차이는 이동거리 축소에서만 나타나지 않고, 그 외 4개 요소에는 통계적 차이가 나타났다. 셋째, 로컬푸드의 인식도와 준수도의 차이를 살펴보면, 친환경성과 신뢰관계, 그리고 유통단계 축소 등의 사회적 측면은 인식도와 준수도의 차이가 크지 않는 반면, 공간적 측면의 이동거리 축소와 지역생산 지역소비는 인식도와 준수도의 차이가 상대적으로 큰 것으로 나타났다.

  • PDF

다변량회귀에서 주선택 반응변수 차원축소 (Principal selected response reduction in multivariate regression)

  • 유재근
    • 응용통계연구
    • /
    • 제34권4호
    • /
    • pp.659-669
    • /
    • 2021
  • 다변량 회귀분석은 경시적 자료분석이나 함수적 자료분석 등 다양한 분야에서 빈번하게 사용되는 통계적 방법론이다. 다변량 회귀분석은 설명변수의 차원 뿐만 아니라 반응변수의 차원때문에 일변량 회귀분석에서 보다 차원의 저주문제에 더 강한 영향을 받는다. 이러한 문제를 해결하기 위해 최근 Yoo (2018)와 Yoo (2019a)에 세 가지 모형기반 반응변수 차원축소 방법이 제시되었다. 하지만 Yoo (2019a)에서 제시한 기본 방법은 모의실험 결과 모형에 가장 영향을 덜 받지만, 다른 두 방법 중 더 나은 방법보다 더 좋은 추정결과를 제시하지 못한다. 이러한 단점을 극복하기 위해 본 논문에서는 기본 방법의 결과 다른 두 방법의 결과를 비교하여, 자료에 따라 최선의 방법을 제시하는 선택 알고리듬을 제시하고, 이를 주선택 반응변수 차원축소라 명명한다. 다양한 모의실험 결과 주선택 반응변수 차원축소는 Yoo (2019a)의 기본방법보다 더 정확하게 차원을 축소하고, 모든 경우에 있더 더 바람직한 방법을 선택함을 확인할 수 있다. 이러한 결과로 제안한 주선택 반응변수의 차원축소 방법의 실제적 유용성을 확인할 수 있다.

집적 영상의 복원과 통계적 패턴분석을 이용한 왜곡에 강인한 3차원 물체 인식 (Three-dimensional Distortion-tolerant Object Recognition using Computational Integral Imaging and Statistical Pattern Analysis)

  • 염석원;이동수;손정영;김신환
    • 한국통신학회논문지
    • /
    • 제34권10B호
    • /
    • pp.1111-1116
    • /
    • 2009
  • 본 논문에서는 집적 영상의 획득과 복원을 이용하여 왜곡에 강인한 물체를 인식하는 방법을 연구한다. 해당 화소들의 확률적 특성인 평균과 표준편차를 이용하여 3차원 공간에서 물체를 복원하고 거리를 추정한다. 표적인식은 Fisher 선형판별법(linear discriminant analysis, LDA)과 주성분 분석법(principal component analysis, PCA) 기술을 결합한 통계적 분류기(statistical classifier)로 수행한다. Fisher 선형판별법은 클래스 간의 판별력을 최대로 하고 주성분 분석법은 Fisher 선형판별법을 수행하기 위한 차원축소를 실행한다. 주성분 분석법은 차원축소 후 복원된 벡터와 원 벡터의 오차를 최소화하는 기술로 알려져 있다. 실험 및 시뮬레이션을 통하여 면외(out-of-plane) 회전된 표적을 본 논문에서 제안한 방법으로 분류한다.

고해상도 동해 연안 파랑예측모델 구축을 위한 통계적 규모축소화 방법 적용 (An Application of Statistical Downscaling Method for Construction of High-Resolution Coastal Wave Prediction System in East Sea)

  • 지준범;조일성;이규태;이원학
    • 한국지구과학회지
    • /
    • 제40권3호
    • /
    • pp.259-271
    • /
    • 2019
  • 동해 연안지역의 고해상도 파랑예측을 위하여 통계적 규모축소화 방안을 적용하여 고해상도 동해 연안 파랑예측시스템을 구축하였다. 예측시스템을 구축하기 위하여 기상청 현업에서 예측된 동해 및 남해 연안파랑예측모델과 전구파랑예측모델의 예측결과를 이용하였다. 3일까지는 연안파랑예측모델들의 결과를 그대로 활용하였고 3일 이후 7일까지는 전구파랑예측모델의 예측결과를 통계적 규모축소화 방안(역거리 가중 내삽방법과 조건부합성방법)을 적용하여 예측하였다. 예측된 고해상도 연안예측시스템을 이용하여 예측된 파고의 2차원 공간분포는 연안예측모델의 초기장(분석장)과 자기상관관계를 이용하여 검증하였고 부이 등 해양관측소 자료를 이용하여 파고 및 풍속 예측을 검증되었다. 수치모델의 예측성능과 유사하게 초기시간에는 예측성능이 높게 나타났으나 시간이 지남에 따라 예측성능이 점진적으로 감소되었다. 전체 기간의 파고 예측결과를 파고 관측자료를 이용하여 검증하였을 때 역거리 가중 내삽과 조건부합성방법 적용에 따른 상관계수와 평균 제곱근 오차는 0.46과 0.34 m에서 0.6과 0.28 m로 개선되었다.