본 논문은 잡음 환경하에서 적응 가능한 음성구간검출를 구축하기 위하여 우도기반의 음성 특징 파라미터의 비선형 차원축소 방법을 제안한다. 제안하는 차원축소 방법은 음성/비음성 클래스에 대한 가우시아 확률 밀도 함수의 비선형적 우도값을 새로운 특징으로 취하는 방법이다. 음성구간검출기의 음성/비음성 결정은 우도비 검증(LRT)의 통계적 방법을 이용하며, 선형판별분석(LDA)에 의한 차원축소 결과와 성능을 비교한다. 실험 결과 제안된 차원 축소 방법으로 음성 특징 파라미터를 2차원으로 축소한 결과가 원래 특징백터의 차원에서의 결과와 대등한 성능을 확인하였다.
문서분류의 문제점 중의 하나는 사용하는 데이터의 차원이 매우 크다는 것이다. 그러므로 문서에서 필요한 단어만을 자동적으로 추출하여 문서데이터의 차원을 축소하는 작업이 문서분류에서는 필수적이다. DF(Document Frequency)는 문서의 차원축소의 대표적인 통계적 방법 중 하나인데, 본 논문에서는 문서의 차원축소에 DF와 주성분 분석(PCA)을 비교하여 주성분 분석이 문서의 차원축소에 적합함을 실험적으로 보인다. 그리고 비선형 주성분 분석(nonlinear PCA) 방법 중 locally linear PCA와 kenel PCA를 적용하여 비선형 주성분 분석을 이용하여 문서의 차원을 줄이는 것이 선형 주성분 분석을 이용하는 것 보다 문서분류에 더 적합함을 실험적으로 보인다.
본 논문은 잡음 환경하에서 특징 벡터의 차원 축소를 통한 음성 구간 검출에 관한 연구이다. 음성/비음성 분류는 통계적 모델을 이용한 분류-기반 방법을 사용한다. 검출기에서 실시간 적응화를 위해 우도-기반의 특징 벡터에 대한 차원 축소 방법을 제안한다. 이 방법은 음성/비음성 클래스에 대한 가우시안 확률 밀도 함수에 의한 비선형적 우도값을 새로운 특징으로 취하는 방법이다. 음성/비음성 결정은 우도비 검증(Likelihood Ratio Test)의 방법을 이용하며, LDA(Linear Discriminant Analys)에 의한 축소 결과와 성능을 비교한다. 실험 결과 제안된 차원 축소 방법을 통하여 2차원으로 축소된 특징 벡터가 고차원에서의 결과와 대등함을 확인하였다.
기후변화가 수자원에 미치는 영향을 평가하는데 있어서 주로 기후모형인 Global Climate Model (GCM)이 사용되고 있다. 그러나 이러한 기후모형의 공간적 해상도는 $3^{\circ}{\sim}4^{\circ}$ 정도로 한반도의 경우 바다로 묘사되기도 한다. 따라서 GCM을 이용해서 기후변화가 유역단위 수자원에 미치는 영향을 평가하기 위해서는 일반적으로 축소기법이 사용되고 있다. 현재까지 다양한 축소기법이 개발되었으며, 대표적인 모형으로는 SDSM(Statistical Down-Scaling Model)과 LARS-WG(The Long Ashton Research Station Weather Generator)이 있다. 이에 본 연구에서는 SDSM, LARS-WG와 함께 최근에 축소기법으로 사용되고 있는 인공신경망 기법을 이용해서 CCCMA(Canadian Centre for Climate Modeling and Analysis)에서 일 단위로 모의한 CGCM3 A2 시나리오를 기반으로 우포늪의 강우 및 온도시나리오를 구축하였다. 대상 지점인 우포늪은 경상남도 창녕군 우포늪(위도 $35^{\circ}$33', 경도 $128^{\circ}$25')에 위치하고 있으며, 모의 기간은 CASE1의 경우 현재, CASE2는 2050$^{\sim}$ 2080년, CASE3는 2080년$^{\sim}$2100년으로 각각 구분하여 축소기법을 적용하였다. 축소결과 축소기법에 따라 일정정도 차이를 보이기는 하였으나 강우와 온도 모두 증가하게 됨을 확인하였다.
Recently, climate change around the world due to global warming has became an important issue and damages by climate change have a bad effect on human life. Changes of Sea Surface Temperature(SST) is associated with natural disaster such as Typhoon and El Nino. So we predicted daily future SST using Statistical Downscaling Method and CGCM 3.1 A1B scenario. 9 points of around Korea peninsular were selected to predict future SST and built up a regression model using Multiple Linear Regression. CGCM 3.1 was simulated with regression model, and that comparing Probability Density Function, Box-Plot, and statistical data to evaluate suitability of regression models, it was validated that regression models were built up properly.
음성 데이터베이스는 TTS 시스템에서 가장 중요한 요소 중의 하나이다. 특히, 내장형 TTS 시스템에서는 서버형 TTS 시스템에서보다 좀 더 작은 데이터베이스를 필요로 한다. 이러한 이유로, 음성합성 데이터의 압축과 통계적 축소과정의 비중은 내장형 TTS 시스템에서 아주 중요한 항목이라고 말할 수 있다. 그러나 이러한 압축과 통계적 축소과정은 합성음질의 저하를 유발시킨다. 본 논문에서는 고품질 내장형 TTS 시스템에서의 데이터 구축방법을 제안하며, MOS 테스트를 통한 합성음질을 검증한다.
본 연구의 목적은 최근 사회적으로 큰 흐름으로 자리잡고 있는 로컬푸드 원칙에 대한 인식도와 준수도를 실증적으로 규명하는 것이다. 본 연구의 주요내용을 요약하면 다음과 같다. 첫째, 로컬푸드 인식도에서는 신뢰관계, 지역생산 지역소비가 가장 중요한 요인으로 나타났고, 상대적으로 친환경성의 중요도는 낮게 나타났다. 이는 종사자와 전문가에서 통계적 차이를 나타내지 않는다. 따라서 로컬푸드 개념에서는 공간적 측면과 사회적 측면의 구성요소가 모두 중요하다. 둘째, 로컬푸드 준수도에서는 신뢰관계와 유통단계의 축소는 비교적 잘 지켜지는 반면, 친환경성과 이동거리는 상대적으로 잘 지켜지지 않는 것으로 나타났다. 준수도의 경우 종사자와 전문가의 인식차이는 이동거리 축소에서만 나타나지 않고, 그 외 4개 요소에는 통계적 차이가 나타났다. 셋째, 로컬푸드의 인식도와 준수도의 차이를 살펴보면, 친환경성과 신뢰관계, 그리고 유통단계 축소 등의 사회적 측면은 인식도와 준수도의 차이가 크지 않는 반면, 공간적 측면의 이동거리 축소와 지역생산 지역소비는 인식도와 준수도의 차이가 상대적으로 큰 것으로 나타났다.
다변량 회귀분석은 경시적 자료분석이나 함수적 자료분석 등 다양한 분야에서 빈번하게 사용되는 통계적 방법론이다. 다변량 회귀분석은 설명변수의 차원 뿐만 아니라 반응변수의 차원때문에 일변량 회귀분석에서 보다 차원의 저주문제에 더 강한 영향을 받는다. 이러한 문제를 해결하기 위해 최근 Yoo (2018)와 Yoo (2019a)에 세 가지 모형기반 반응변수 차원축소 방법이 제시되었다. 하지만 Yoo (2019a)에서 제시한 기본 방법은 모의실험 결과 모형에 가장 영향을 덜 받지만, 다른 두 방법 중 더 나은 방법보다 더 좋은 추정결과를 제시하지 못한다. 이러한 단점을 극복하기 위해 본 논문에서는 기본 방법의 결과 다른 두 방법의 결과를 비교하여, 자료에 따라 최선의 방법을 제시하는 선택 알고리듬을 제시하고, 이를 주선택 반응변수 차원축소라 명명한다. 다양한 모의실험 결과 주선택 반응변수 차원축소는 Yoo (2019a)의 기본방법보다 더 정확하게 차원을 축소하고, 모든 경우에 있더 더 바람직한 방법을 선택함을 확인할 수 있다. 이러한 결과로 제안한 주선택 반응변수의 차원축소 방법의 실제적 유용성을 확인할 수 있다.
본 논문에서는 집적 영상의 획득과 복원을 이용하여 왜곡에 강인한 물체를 인식하는 방법을 연구한다. 해당 화소들의 확률적 특성인 평균과 표준편차를 이용하여 3차원 공간에서 물체를 복원하고 거리를 추정한다. 표적인식은 Fisher 선형판별법(linear discriminant analysis, LDA)과 주성분 분석법(principal component analysis, PCA) 기술을 결합한 통계적 분류기(statistical classifier)로 수행한다. Fisher 선형판별법은 클래스 간의 판별력을 최대로 하고 주성분 분석법은 Fisher 선형판별법을 수행하기 위한 차원축소를 실행한다. 주성분 분석법은 차원축소 후 복원된 벡터와 원 벡터의 오차를 최소화하는 기술로 알려져 있다. 실험 및 시뮬레이션을 통하여 면외(out-of-plane) 회전된 표적을 본 논문에서 제안한 방법으로 분류한다.
동해 연안지역의 고해상도 파랑예측을 위하여 통계적 규모축소화 방안을 적용하여 고해상도 동해 연안 파랑예측시스템을 구축하였다. 예측시스템을 구축하기 위하여 기상청 현업에서 예측된 동해 및 남해 연안파랑예측모델과 전구파랑예측모델의 예측결과를 이용하였다. 3일까지는 연안파랑예측모델들의 결과를 그대로 활용하였고 3일 이후 7일까지는 전구파랑예측모델의 예측결과를 통계적 규모축소화 방안(역거리 가중 내삽방법과 조건부합성방법)을 적용하여 예측하였다. 예측된 고해상도 연안예측시스템을 이용하여 예측된 파고의 2차원 공간분포는 연안예측모델의 초기장(분석장)과 자기상관관계를 이용하여 검증하였고 부이 등 해양관측소 자료를 이용하여 파고 및 풍속 예측을 검증되었다. 수치모델의 예측성능과 유사하게 초기시간에는 예측성능이 높게 나타났으나 시간이 지남에 따라 예측성능이 점진적으로 감소되었다. 전체 기간의 파고 예측결과를 파고 관측자료를 이용하여 검증하였을 때 역거리 가중 내삽과 조건부합성방법 적용에 따른 상관계수와 평균 제곱근 오차는 0.46과 0.34 m에서 0.6과 0.28 m로 개선되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.