• Title/Summary/Keyword: 토픽 검색

Search Result 131, Processing Time 0.023 seconds

Features for Author Disambiguation (저자 식별을 위한 자질 비교)

  • Kang, In-Su;Lee, Seung-Woo;Jung, Han-Min;Kim, Pyung;Koo, Hee-Kwan;Lee, Mi-Kyung;Sung, Won-Kyung;Park, Dong-In
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.2
    • /
    • pp.41-47
    • /
    • 2008
  • There exists a many-to-many mapping relationship between persons and their names. A person may have multiple names, and different persons may share the same name. These synonymous and homonymous names may severely deteriorate the recall and precision of the person search, respectively. This study addresses the characteristics of features for resolving homonymous author names appearing in citation data. As disambiguation features, previous works have employed citation-internal features such as co-authorship, titles of articles, titles of publications as well as citation-external features such as emails, affiliations, Web evidences. To the best of our knowledge, however, there has been no literature to deal with the influences of features on author disambiguation. This study analyzes the effect of individual features on author resolution using a large-scale test set for Korean.

A Scalable and Effective DDS Participant Discovery Mechanism (확장성과 효율성 고려한 DDS 참여자 디스커버리 기법)

  • Kwon, Ki-Jung;You, Yong-Duck;Choi, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1344-1356
    • /
    • 2009
  • The DDS (Data Distribution Service) is a data-centric communication technology that provides an efficient communication service that supports a dynamic plug & play through an automatic setting of participants' location information for each data (Topic) by using DDS discovery technique. This paper proposes the hierarchical-structured DDS discovery technique (SPDP-TBF) suitable for the large-scale distributed systems by comparing and analyzing the existing DDS discovery techniques in terms of performance and problem areas. The proposed SPDP-TBF performs the periodic discovery of the involved participants only by having separate hierarchical managers which take charge of the registration and search (of participants) so that a participant sends its information to the related participants only, and it enhances the effectiveness of the message transfer. Moreover, the proposed SPDP-TBF provides the improved scalability by performing the hierarchical discovery through hierarchical manager nodes so that it can be applied to the large-scale distributed system.

An Automatically Extracting Formal Information from Unstructured Security Intelligence Report (비정형 Security Intelligence Report의 정형 정보 자동 추출)

  • Hur, Yuna;Lee, Chanhee;Kim, Gyeongmin;Jo, Jaechoon;Lim, Heuiseok
    • Journal of Digital Convergence
    • /
    • v.17 no.11
    • /
    • pp.233-240
    • /
    • 2019
  • In order to predict and respond to cyber attacks, a number of security companies quickly identify the methods, types and characteristics of attack techniques and are publishing Security Intelligence Reports(SIRs) on them. However, the SIRs distributed by each company are huge and unstructured. In this paper, we propose a framework that uses five analytic techniques to formulate a report and extract key information in order to reduce the time required to extract information on large unstructured SIRs efficiently. Since the SIRs data do not have the correct answer label, we propose four analysis techniques, Keyword Extraction, Topic Modeling, Summarization, and Document Similarity, through Unsupervised Learning. Finally, has built the data to extract threat information from SIRs, analysis applies to the Named Entity Recognition (NER) technology to recognize the words belonging to the IP, Domain/URL, Hash, Malware and determine if the word belongs to which type We propose a framework that applies a total of five analysis techniques, including technology.

Analyzing the Issue Life Cycle by Mapping Inter-Period Issues (기간별 이슈 매핑을 통한 이슈 생명주기 분석 방법론)

  • Lim, Myungsu;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.25-41
    • /
    • 2014
  • Recently, the number of social media users has increased rapidly because of the prevalence of smart devices. As a result, the amount of real-time data has been increasing exponentially, which, in turn, is generating more interest in using such data to create added value. For instance, several attempts are being made to analyze the relevant search keywords that are frequently used on new portal sites and the words that are regularly mentioned on various social media in order to identify social issues. The technique of "topic analysis" is employed in order to identify topics and themes from a large amount of text documents. As one of the most prevalent applications of topic analysis, the technique of issue tracking investigates changes in the social issues that are identified through topic analysis. Currently, traditional issue tracking is conducted by identifying the main topics of documents that cover an entire period at the same time and analyzing the occurrence of each topic by the period of occurrence. However, this traditional issue tracking approach has two limitations. First, when a new period is included, topic analysis must be repeated for all the documents of the entire period, rather than being conducted only on the new documents of the added period. This creates practical limitations in the form of significant time and cost burdens. Therefore, this traditional approach is difficult to apply in most applications that need to perform an analysis on the additional period. Second, the issue is not only generated and terminated constantly, but also one issue can sometimes be distributed into several issues or multiple issues can be integrated into one single issue. In other words, each issue is characterized by a life cycle that consists of the stages of creation, transition (merging and segmentation), and termination. The existing issue tracking methods do not address the connection and effect relationship between these issues. The purpose of this study is to overcome the two limitations of the existing issue tracking method, one being the limitation regarding the analysis method and the other being the limitation involving the lack of consideration of the changeability of the issues. Let us assume that we perform multiple topic analysis for each multiple period. Then it is essential to map issues of different periods in order to trace trend of issues. However, it is not easy to discover connection between issues of different periods because the issues derived for each period mutually contain heterogeneity. In this study, to overcome these limitations without having to analyze the entire period's documents simultaneously, the analysis can be performed independently for each period. In addition, we performed issue mapping to link the identified issues of each period. An integrated approach on each details period was presented, and the issue flow of the entire integrated period was depicted in this study. Thus, as the entire process of the issue life cycle, including the stages of creation, transition (merging and segmentation), and extinction, is identified and examined systematically, the changeability of the issues was analyzed in this study. The proposed methodology is highly efficient in terms of time and cost, as it sufficiently considered the changeability of the issues. Further, the results of this study can be used to adapt the methodology to a practical situation. By applying the proposed methodology to actual Internet news, the potential practical applications of the proposed methodology are analyzed. Consequently, the proposed methodology was able to extend the period of the analysis and it could follow the course of progress of each issue's life cycle. Further, this methodology can facilitate a clearer understanding of complex social phenomena using topic analysis.

Design and Implementation of Thesaurus System for Geological Terms (지질용어 시소러스 시스템의 설계 및 구축)

  • Hwang, Jaehong;Chi, KwangHoon;Han, JongGyu;Yeon, Young Kwang;Ryu, Keun Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.2
    • /
    • pp.23-35
    • /
    • 2007
  • With the development of semantic web technologies in information retrieval area, the necessity for thesaurus is recently increasing along with internet lexicons. A thesaurus is the combination of classification and a lexicon, and is the topic map of knowledge structure expressing relations among concepts(terms) subject to human knowledge activities such as learning and research using formally organized and controlled index terms for clarifying the context of superordinate and subordinate concepts. However, although thesaurus are regarded as essential tools for controlling and standardizing terms and searching and processing information efficiently, we do not have a Korean thesaurus for geology. To build a thesaurus, we need standardized and well-defined guidelines. The standardized guidelines enable efficient information management and help information users use correct information easily and conveniently. The present study purposed to build a thesaurus system with terms used in geology. For this, First, we surveyed related works for standardizing geological terms in Korea and other countries. Second, we defined geological topics in 15 areas and prepared a classification system(draft) for each topic. Third, based on the geological thesaurus classification system, we created the specification of geological thesaurus. Lastly, we designed and implemented an internet-based geological thesaurus system using the specification.

  • PDF

Text Mining-Based Analysis for Research Trends in Vocational Studies (텍스트 마이닝을 활용한 직업학 연구동향 분석)

  • Yook, Dong-In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.586-599
    • /
    • 2017
  • This study attempts to understand the overall research trends in Vocational Studies using a text mining method, which is a means to analyze big data. The findings of the research show that Vocational Studies in Korea has been directly influenced by global economic crises, as evidenced by its exponential growth after the 1997 foreign exchange crisis that resulted in a bailout from the IMF. In addition, the topics of research have been shifting from such macro subjects as government policies and systems to such micro topics as individual career development. Moreover, the perspective of research is being moved from the socially vulnerable, including women and the disabled, to the economically marginalized, including retirees and the unemployed. As for the research targets, college students overwhelmingly outnumbered primary and secondary school students. However, few cases analyzed the clinical outcomes of career counseling or attempted to process job information and study the history of jobs. This research is limited in that it only analyzed journal abstracts. Nonetheless, it is meaningful because it used topic analysis, one of the text mining methods, to give a complete enumeration of all articles available for search, thereby crafting a framework of quantitative analysis methodology for Vocational Studies. It is also significant in that it is the first attempt to analyze themes in every stage of the development of Vocational Studies.

A Study on Automatic Classification of Newspaper Articles Based on Unsupervised Learning by Departments (비지도학습 기반의 행정부서별 신문기사 자동분류 연구)

  • Kim, Hyun-Jong;Ryu, Seung-Eui;Lee, Chul-Ho;Nam, Kwang Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.345-351
    • /
    • 2020
  • Administrative agencies today are paying keen attention to big data analysis to improve their policy responsiveness. Of all the big data, news articles can be used to understand public opinion regarding policy and policy issues. The amount of news output has increased rapidly because of the emergence of new online media outlets, which calls for the use of automated bots or automatic document classification tools. There are, however, limits to the automatic collection of news articles related to specific agencies or departments based on the existing news article categories and keyword search queries. Thus, this paper proposes a method to process articles using classification glossaries that take into account each agency's different work features. To this end, classification glossaries were developed by extracting the work features of different departments using Word2Vec and topic modeling techniques from news articles related to different agencies. As a result, the automatic classification of newspaper articles for each department yielded approximately 71% accuracy. This study is meaningful in making academic and practical contributions because it presents a method of extracting the work features for each department, and it is an unsupervised learning-based automatic classification method for automatically classifying news articles relevant to each agency.

An Analysis on Media Trends in Public Agency for Social Service Applying Text Mining (텍스트 마이닝을 적용한 사회서비스원 언론보도기사 분석)

  • Park, Hae-Keung;Youn, Ki-Hyok
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.2
    • /
    • pp.41-48
    • /
    • 2022
  • This study tried to empirically explore which issues related to the social service agency for public(as below SSA), that is, social perceptions were formed, by using mess media related to the SSA. This study is meaningful in that it identifies the overall social perception and trend of SSA through public opinion. In order to extract media trend data, the search used the big data analysis system, Textom, to collect data from the representative portals Naver News and Daum News. The collected texts were 1,299 in 2020 and 1,410 in 2021, for a total of 2,709. As a result of the analysis, first, the most derived words in relation to the frequency of text appearance were 'SSA', 'establishment', and 'operation'. Second, as a result of the N-gram analysis, the pairs of words directly related to the SSA 'SSA and public', 'SSA and opening', 'SSA and launch', and 'SSA and Department Director', 'SSA and Staff', 'SSA and Caregiver' etc. Third, in the results of TF-IDF analysis and word network analysis, similar to the word occurrence frequency and N-gram results, 'establishment', 'operation', 'public', 'launch', 'provided', 'opened', ' 'Holding' and 'Care' were derived. Based on the above analysis results, it was suggested to strengthen the emergency care support group, to commercialize it in detail, and to stabilize jobs.

User Experience Analysis and Management Based on Text Mining: A Smart Speaker Case (텍스트 마이닝 기반 사용자 경험 분석 및 관리: 스마트 스피커 사례)

  • Dine Yeon;Gayeon Park;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.22 no.2
    • /
    • pp.77-99
    • /
    • 2020
  • Smart speaker is a device that provides an interactive voice-based service that can search and use various information and contents such as music, calendar, weather, and merchandise using artificial intelligence. Since AI technology provides more sophisticated and optimized services to users by accumulating data, early smart speaker manufacturers tried to build a platform through aggressive marketing. However, the frequency of using smart speakers is less than once a month, accounting for more than one third of the total, and user satisfaction is only 49%. Accordingly, the necessity of strengthening the user experience of smart speakers has emerged in order to acquire a large number of users and to enable continuous use. Therefore, this study analyzes the user experience of the smart speaker and proposes a method for enhancing the user experience of the smart speaker. Based on the analysis results in two stages, we propose ways to enhance the user experience of smart speakers by model. The existing research on the user experience of the smart speaker was mainly conducted by survey and interview-based research, whereas this study collected the actual review data written by the user. Also, this study interpreted the analysis result based on the smart speaker user experience dimension. There is an academic significance in interpreting the text mining results by developing the smart speaker user experience dimension. Based on the results of this study, we can suggest strategies for enhancing the user experience to smart speaker manufacturers.

A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github (텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로)

  • Chong, JiSeon;Kim, Dongsung;Lee, Hong Joo;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.1-19
    • /
    • 2019
  • Artificial intelligence (AI) is one of the main driving forces leading the Fourth Industrial Revolution. The technologies associated with AI have already shown superior abilities that are equal to or better than people in many fields including image and speech recognition. Particularly, many efforts have been actively given to identify the current technology trends and analyze development directions of it, because AI technologies can be utilized in a wide range of fields including medical, financial, manufacturing, service, and education fields. Major platforms that can develop complex AI algorithms for learning, reasoning, and recognition have been open to the public as open source projects. As a result, technologies and services that utilize them have increased rapidly. It has been confirmed as one of the major reasons for the fast development of AI technologies. Additionally, the spread of the technology is greatly in debt to open source software, developed by major global companies, supporting natural language recognition, speech recognition, and image recognition. Therefore, this study aimed to identify the practical trend of AI technology development by analyzing OSS projects associated with AI, which have been developed by the online collaboration of many parties. This study searched and collected a list of major projects related to AI, which were generated from 2000 to July 2018 on Github. This study confirmed the development trends of major technologies in detail by applying text mining technique targeting topic information, which indicates the characteristics of the collected projects and technical fields. The results of the analysis showed that the number of software development projects by year was less than 100 projects per year until 2013. However, it increased to 229 projects in 2014 and 597 projects in 2015. Particularly, the number of open source projects related to AI increased rapidly in 2016 (2,559 OSS projects). It was confirmed that the number of projects initiated in 2017 was 14,213, which is almost four-folds of the number of total projects generated from 2009 to 2016 (3,555 projects). The number of projects initiated from Jan to Jul 2018 was 8,737. The development trend of AI-related technologies was evaluated by dividing the study period into three phases. The appearance frequency of topics indicate the technology trends of AI-related OSS projects. The results showed that the natural language processing technology has continued to be at the top in all years. It implied that OSS had been developed continuously. Until 2015, Python, C ++, and Java, programming languages, were listed as the top ten frequently appeared topics. However, after 2016, programming languages other than Python disappeared from the top ten topics. Instead of them, platforms supporting the development of AI algorithms, such as TensorFlow and Keras, are showing high appearance frequency. Additionally, reinforcement learning algorithms and convolutional neural networks, which have been used in various fields, were frequently appeared topics. The results of topic network analysis showed that the most important topics of degree centrality were similar to those of appearance frequency. The main difference was that visualization and medical imaging topics were found at the top of the list, although they were not in the top of the list from 2009 to 2012. The results indicated that OSS was developed in the medical field in order to utilize the AI technology. Moreover, although the computer vision was in the top 10 of the appearance frequency list from 2013 to 2015, they were not in the top 10 of the degree centrality. The topics at the top of the degree centrality list were similar to those at the top of the appearance frequency list. It was found that the ranks of the composite neural network and reinforcement learning were changed slightly. The trend of technology development was examined using the appearance frequency of topics and degree centrality. The results showed that machine learning revealed the highest frequency and the highest degree centrality in all years. Moreover, it is noteworthy that, although the deep learning topic showed a low frequency and a low degree centrality between 2009 and 2012, their ranks abruptly increased between 2013 and 2015. It was confirmed that in recent years both technologies had high appearance frequency and degree centrality. TensorFlow first appeared during the phase of 2013-2015, and the appearance frequency and degree centrality of it soared between 2016 and 2018 to be at the top of the lists after deep learning, python. Computer vision and reinforcement learning did not show an abrupt increase or decrease, and they had relatively low appearance frequency and degree centrality compared with the above-mentioned topics. Based on these analysis results, it is possible to identify the fields in which AI technologies are actively developed. The results of this study can be used as a baseline dataset for more empirical analysis on future technology trends that can be converged.