• Title/Summary/Keyword: 토픽 검색

Search Result 131, Processing Time 0.024 seconds

Analysis of Domestic Research on Depression and Stress : Focused on the Treatment and Subjects (우울과 스트레스에 관한 국내 연구 분석 : 치료와 대상자를 중심으로)

  • Jo, Nam-Hee;Na, Eun-Young
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.6
    • /
    • pp.53-59
    • /
    • 2017
  • This study was attempted to identify the domestic research related to depression and stress. The subjects of the analysis were 1,875 college degree theses thrown in the National Assembly Library searched by the depression and stress keyword as of November 30, 2016. The analysis method visualizes atypical data with Word Cloud, which is one of the text mining techniques. We also used the R'LDA package and LDA to classify treatment and subjects. As a result of the analysis, 233(12.4%) of the total papers with therapeutic keywords were found. Application of treatment methods was art therapy, music therapy, horticultural therapy, cognitive behavior therapy, clinical art therapy, cognitive therapy, psychological therapy, depression treatment, group therapy, laughter treatment sequence. The study subjects were adolescents, elderly, patient, mother, child, female, parents, and college students in order. The results of LDA topic analysis for adolescents were classified into four topics: self-support, treatment program, relationship effect, and variable study.

Analysis of the Knowledge Structure of Research related to Reality Shock Experienced by New Graduate Nurses using Text Network Analysis (텍스트네트워크분석을 활용한 신규간호사가 경험하는 현실충격 관련 연구의 지식구조 분석)

  • Heejang Yun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.463-469
    • /
    • 2023
  • The aim of this study is to provide basic data that can contribute to improving successful clinical adaptation and reducing turnover of new graduate nurses by analyzing research related to reality shock experienced by new graduate nurses using text network analysis. The topics of reality shock experienced by new graduate nurses were extracted from 115 papers published in domestic and foreign journals from January 2002 to December 2021. Articles were retrieved from 6 databases (Korean DB: DBpia, KISS, RISS /International DB: Web of science, Springer, Scopus). Keywords were extracted from the abstract and organized using semantic morphemes. Network analysis and topic modeling for subject knowledge structure analysis were performed using NetMiner 4.5.0 program. The core keywords included 'new graduate nurses', 'reality shock', 'transition', 'student nurse', 'experience', 'practice', 'work environment', 'role', 'care' and 'education'. In recent articles on reality shock experienced by new graduate nurses, three major topics were extracted by LDA (Latent Dirichlet Allocation) techniques: 'turnover', 'work environment', 'experience of transition'. Based on this research, the necessity of interventional research that can effectively reduce the reality shock experienced by new graduate nurses and successfully help clinical adaptation is suggested.

Analysis of Research Trends on Archival Information Services Using Text Mining (텍스트마이닝을 활용한 국내외 기록서비스 연구동향 분석)

  • Seohee Park;Hye-Eun Lee
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.24 no.1
    • /
    • pp.89-109
    • /
    • 2024
  • The study analyzed the research trends of domestic and international record information services from 2003 to 2022. A total of 136 academic papers registered in the Korea Citation Index (KCI) and 74 from the Library, Information Science & Technology Abstracts (LISTA) were examined by quantitative and qualitative content analysis to understand the research status of 20 years from various angles, such as publication year, research type, researcher type, subject, and purpose. Frequency analysis, co-occurrence frequency analysis, centrality analysis, and topic modeling were performed by applying text mining techniques. Results showed that domestic papers demonstrated a research flow focused on specific institutions or records, and user-centered satisfaction surveys and content-centered studies were conducted. Moreover, foreign papers confirmed various evaluation-oriented and information provision studies, such as data, resources, and collections, along with the research trend focusing on the relationship between archivists and users. The management of information resources was identified as a common topic in both domestic and foreign papers, but it is possible to identify that domestic research focuses on maintaining the quality of domestic information resources, while foreign research focuses on the storage and retrieval of information.

A study of Artificial Intelligence (AI) Speaker's Development Process in Terms of Social Constructivism: Focused on the Products and Periodic Co-revolution Process (인공지능(AI) 스피커에 대한 사회구성 차원의 발달과정 연구: 제품과 시기별 공진화 과정을 중심으로)

  • Cha, Hyeon-ju;Kweon, Sang-hee
    • Journal of Internet Computing and Services
    • /
    • v.22 no.1
    • /
    • pp.109-135
    • /
    • 2021
  • his study classified the development process of artificial intelligence (AI) speakers through analysis of the news text of artificial intelligence (AI) speakers shown in traditional news reports, and identified the characteristics of each product by period. The theoretical background used in the analysis are news frames and topic frames. As analysis methods, topic modeling and semantic network analysis using the LDA method were used. The research method was a content analysis method. From 2014 to 2019, 2710 news related to AI speakers were first collected, and secondly, topic frames were analyzed using Nodexl algorithm. The result of this study is that, first, the trend of topic frames by AI speaker provider type was different according to the characteristics of the four operators (communication service provider, online platform, OS provider, and IT device manufacturer). Specifically, online platform operators (Google, Naver, Amazon, Kakao) appeared as a frame that uses AI speakers as'search or input devices'. On the other hand, telecommunications operators (SKT, KT) showed prominent frames for IPTV, which is the parent company's flagship business, and 'auxiliary device' of the telecommunication business. Furthermore, the frame of "personalization of products and voice service" was remarkable for OS operators (MS, Apple), and the frame for IT device manufacturers (Samsung) was "Internet of Things (IoT) Integrated Intelligence System". The econd, result id that the trend of the topic frame by AI speaker development period (by year) showed a tendency to develop around AI technology in the first phase (2014-2016), and in the second phase (2017-2018), the social relationship between AI technology and users It was related to interaction, and in the third phase (2019), there was a trend of shifting from AI technology-centered to user-centered. As a result of QAP analysis, it was found that news frames by business operator and development period in AI speaker development are socially constituted by determinants of media discourse. The implication of this study was that the evolution of AI speakers was found by the characteristics of the parent company and the process of co-evolution due to interactions between users by business operator and development period. The implications of this study are that the results of this study are important indicators for predicting the future prospects of AI speakers and presenting directions accordingly.

An Online Review Mining Approach to a Recommendation System (고객 온라인 구매후기를 활용한 추천시스템 개발 및 적용)

  • Cho, Seung-Yean;Choi, Jee-Eun;Lee, Kyu-Hyun;Kim, Hee-Woong
    • Information Systems Review
    • /
    • v.17 no.3
    • /
    • pp.95-111
    • /
    • 2015
  • The recommendation system automatically provides the predicted items which are expected to be purchased by analyzing the previous customer behaviors. This recommendation system has been applied to many e-commerce businesses, and it is generating positive effects on user convenience as well as the company's revenue. However, there are several limitations of the existing recommendation systems. They do not reflect specific criteria for evaluating products or the factors that affect customer buying decisions. Thus, our research proposes a collaborative recommendation model algorithm that utilizes each customer's online product reviews. This study deploys topic modeling method for customer opinion mining. Also, it adopts a kernel-based machine learning concept by selecting kernels explaining individual similarities in accordance with customers' purchase history and online reviews. Our study further applies a multiple kernel learning algorithm to integrate the kernelsinto a combined model for predicting the product ratings, and it verifies its validity with a data set (including purchased item, product rating, and online review) of BestBuy, an online consumer electronics store. This study theoretically implicates by suggesting a new method for the online recommendation system, i.e., a collaborative recommendation method using topic modeling and kernel-based learning.

Exploring Issues Related to the Metaverse from the Educational Perspective Using Text Mining Techniques - Focusing on News Big Data (텍스트마이닝 기법을 활용한 교육관점에서의 메타버스 관련 이슈 탐색 - 뉴스 빅데이터를 중심으로)

  • Park, Ju-Yeon;Jeong, Do-Heon
    • Journal of Industrial Convergence
    • /
    • v.20 no.6
    • /
    • pp.27-35
    • /
    • 2022
  • The purpose of this study is to analyze the metaverse-related issues in the news big data from an educational perspective, explore their characteristics, and provide implications for the educational applicability of the metaverse and future education. To this end, 41,366 cases of metaverse-related data searched on portal sites were collected, and weight values of all extracted keywords were calculated and ranked using TF-IDF, a representative term weight model, and then word cloud visualization analysis was performed. In addition, major topics were analyzed using topic modeling(LDA), a sophisticated probability-based text mining technique. As a result of the study, topics such as platform industry, future talent, and extension in technology were derived as core issues of the metaverse from an educational perspective. In addition, as a result of performing secondary data analysis under three key themes of technology, job, and education, it was found that metaverse has issues related to education platform innovation, future job innovation, and future competency innovation in future education. This study is meaningful in that it analyzes a vast amount of news big data in stages to draw issues from an education perspective and provide implications for future education.

Trend Analysis of Korea Papers in the Fields of 'Artificial Intelligence', 'Machine Learning' and 'Deep Learning' ('인공지능', '기계학습', '딥 러닝' 분야의 국내 논문 동향 분석)

  • Park, Hong-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.4
    • /
    • pp.283-292
    • /
    • 2020
  • Artificial intelligence, which is one of the representative images of the 4th industrial revolution, has been highly recognized since 2016. This paper analyzed domestic paper trends for 'Artificial Intelligence', 'Machine Learning', and 'Deep Learning' among the domestic papers provided by the Korea Academic Education and Information Service. There are approximately 10,000 searched papers, and word count analysis, topic modeling and semantic network is used to analyze paper's trends. As a result of analyzing the extracted papers, compared to 2015, in 2016, it increased 600% in the field of artificial intelligence, 176% in machine learning, and 316% in the field of deep learning. In machine learning, a support vector machine model has been studied, and in deep learning, convolutional neural networks using TensorFlow are widely used in deep learning. This paper can provide help in setting future research directions in the fields of 'artificial intelligence', 'machine learning', and 'deep learning'.

Design and Implementation of an Automatic Translator for Converting a Virtual Document to a XTM Document (가상문서를 XTM 문서로 변환해 주는 자동변환시스템 설계 및 구현)

  • Yun, Yeo-Jun;Cho, Suck-Hyun;Kim, Tae-Hyun;Myaeng, Sung-Hyon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.10b
    • /
    • pp.1131-1134
    • /
    • 2001
  • 가상문서 개념에 기반을 둔 디지털도서관에서는 기존의 멀티미디어 문서를 활용하여 새로운 view를 생성하고 지식을 창출할 수 있는 기능을 제공한다. 이 접근 방법의 초점은 링크를 사용하여 기존의 자원을 연결하여 가상문서를 생성하고 필요한때 필요한 부분만 가져다가 통합하여 재현시킬 수 있는 기능과 이렇게 생성된 가상문서를 총체적으로 혹은 부분적으로 검색할 수 있다는 것이다. 반면에 W3C에서는 Topic Maps라는 개념을 표준안으로 하였는데, 이 개념은 근본 취지에 있어 가상문서의 개념과 매우 유사하나 문서를 끌어서 통합하는 기능이나 부분문서를 가져오는 기능 등이 없다. 여기서도 기존 문서에 링크를 걸어 사용자가 원하는 토픽이 연결될 수 있도록 하는 기능을 규정하고 있는데, 지식 표현 및 추론 등 다양한 응용에 관한 연구가 진행되어 오고 있다. 따라서 본 연구에서는 충남대학교에서 개발한 가상문서 기반 디지털도서관 개념에 이 Topic Maps 기능을 연결하여 호환성을 제공하는 것을 목표로 한다. 이러한 호환성은 디지털도서관 분야에서의 핵심 이슈이며, 실용적인 관점에서 가상문서 기반 디지털도서관의 가용성을 향상시켜 궁극적으로 외부 시스템과도 연계될 수 있는 기반을 제공할 것이다.

  • PDF

Automatic Document Summary Technique Using Fuzzy Theory (퍼지이론을 이용한 자동문서 요약 기술)

  • Lee, Sanghoon;Moon, Seung-Jin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.12
    • /
    • pp.531-536
    • /
    • 2014
  • With the very large quantity of information available on the Internet, techniques for dealing with the abundance of documents have become increasingly necessary but the problem of processing information in the documents is still technically challenging and remains under study. Automatic document summary techniques have been considered as one of critical solutions for processing documents to retain the important points and to remove duplicated contents of the original documents. In this paper, we propose a document summarization technique that uses a fuzzy theory. Proposed summary technique solves the ambiguous problem of various features determining the importance of the sentence and the experiment result shows that the technique generates better results than other previous techniques.

Ontology describing Process Information for Web Services Discovery (웹 서비스 발견을 위해 프로세스 정보를 기술하는 온톨로지)

  • Yu, Jeong-Youn;Lee, Kyu-Chul
    • The Journal of Society for e-Business Studies
    • /
    • v.12 no.3
    • /
    • pp.151-175
    • /
    • 2007
  • Until now, most semantic web service discovery research has been carried out using either Web Service Modeling Ontology (WSMO) or a profile of OWL-based Web Service ontology (OWL-S). However, such efforts have focused primarily on service name and input/output ontology. Thus, the internal information of a service has not been utilized, and queries regarding internal information such as 'Find book-selling services allowing payment after delivery' are not addressed. This study outlines the development of TM-S (Topic Maps for Service) ontology and TMS-QL (TM-S Query Language), two novel technologies that address the aforementioned issues in semantic web service discovery research. TM-S ontology describes the behavior of services using process information and consists of three sub-ontologies: process signature ontology, process structure ontology and process concept ontology. TMS-QL allows users to describe service discovery requests.

  • PDF