정보의 양이 폭발적으로 증가함에 따라 방대한 정보 속에서 사용자의 검색 의도에 맞는 정보를 효과적으로 제공하기란 매우 어려워졌다. 따라서 웹 사용자들의 요구사항을 충족시키기 위한 연구들이 활발히 수행되고 있으며, 많은 방법론들이 제시되고 있다. 본 논문에서는 회귀분석이라는 통계학적 기법을 통해 검색 토픽에 대한 사용자의 인적속성들이 미치는 영향력을 산출하였다. 이는 인간이 가진 내재적 특성이 토픽별 검색 성향과 어떠한 연관관계가 있는지를 규명한 것이다. 또한 특정 토픽에 대해 영향력이 높은 인적속성의 일치 여부가 해당 토픽에 대한 사용자 검색성향의 유사정도와 매우 큰 상관관계가 있는 것을 증명하였다. 이와 같은 사실을 기반으로 사용자가 특정 토픽에 대해 검색 시 해당 토픽에 대해 영향력이 높은 인적속성을 확인하고, 이 속성이 일치하는 사람들의 검색 정보를 제공한다면, 사용자는 보다 만족된 검색결과를 얻을 수 있을 것이다.
이 연구에서는 TRBC이 제시한 토픽 검색의 정의에 따라 질의에 적합한 웹 사이트를 검색하는 효과적인 토픽 검색 알고리즘을 제안하고 실험을 통해 그 성능을 평가하였다. 이 연구의 토픽 검색 알고리즘은 먼저 질의에 대한 웹 페이지 검색 결과로부터 적합한 웹 사이트를 선정한 다음, 선정된 사이트의 구조를 이용하여 질의에 대한 적합성 점수를 산출한다. TREC의 .GOV 실험 문헌 집단과 TREC-2004 실험의 질의 및 적합문헌 리스트를 이용한 검색 실험 결과 이 토픽 검색 알고리즘은 상위 10위 안에 최소 2개 이상의 적합 사이트를 검색하여 비교적 높은 수준의 성능을 보였다. 또한 TREC-2004의 적합문헌 리스트 분석을 통해 적합문헌 선정에 토픽 검색의 정의가 엄격하게 적용되지 않은 경우가 있음을 확인하고, 수정된 적합문헌 리스트를 이용하여 토픽 검색 성능을 재평가한 결과 이 연구에서 제안한 토픽 검색 알고리즘의 성능이 월등히 향상되었다.
헬스 분야에서 정보 검색의 어려움 중의 하나는 일반 사용자들이 전문적인 용어들을 이해하기가 어렵다는 점이다. 헬스와 관련된 전문 용어들은 일반 사용자들이 검색어로 사용하기 어렵기 때문에 이러한 전문 용어들이 자동적으로 검색어에 더해질 수 있다면 좀 더 검색의 효과를 높일 수 있을 것이다. 제안된 검색어 확장 모델은 전문 용어를 포함하는 MeSH(Medical Subject Headings)를 검색어 확장을 위한 단어 후보 군으로 이용하였다. 문서들은 MeSH용어들로 표현이 되고 이렇게 표현된 문서들의 집합에 대해서 LDA(Latent Dirichlet Analysis) 토픽들이 생성된 후, (검색어+초기 검색어에 의해 검색된 상위 k개 문서들)에 연관된 토픽 단어들이 원래의 검색어를 확장하는 데 쓰여졌다. MeSH로 구성된 토픽 단어들은 임의로 정해진 토픽 확률 임계값과 토픽을 구성하는 단어의 확률 임계값보다 높았을 때 초기의 검색어에 포함되었다. 특정수의 토픽을 갖는 LDA 모델에서 이러한 적절한 임계값의 설정을 통해 선택된 토픽 단어들은 검색어 확장에 이용되어 검색시에 infAP(inferred Average Precision)와 infNDCG(inferred Normalized Discounted Cumulative Gain)를 높이는데 효과적으로 작용하였다. 또한 토픽 확률값과 토픽 단어의 확률값을 곱하여 계산된 토픽 단어의 스코어가 높은 상위 k개의 단어를 검색어를 확장하는 데 이용하였을 때에도 검색의 성능이 향상될 수 있음을 확인하였다.
토픽맵은 방대한 양의 정보를 의미론적 연관관계에 따라 분류, 조직하여 탐색할 수 있도록 효율적인 검색을 제공하기 위해 제안된 도구이다. 본 연구는 대학의 교직원들이 학사행정 대학기록물 검색시 의미기반 검색을 통해 보다 적합한 검색결과를 제공받을 수 있도록 토픽맵 기반 대학기록물 검색시스템을 설계한 것이고 그 과정을 보여준다. 본 연구를 위해 D대학의 2년간 학사행정 기록물들이 사용되었고 의미관계를 구조화하기 위해 대학의 업무 기능 분류표를 참조하였다. 온토피아 옴니게이트를 사용하여 토픽맵을 구축하였다. 대학의 학사행정 관련 기록물의 토픽은 총 626개로 나타났고, 토픽 타입은 학사업무, 교직원, 학적, 대학, 학생, 기타로 구성하였다. 관계는 토픽들간의 연관으로 6개 유형이 나타났고, 어커런스 타입은 등록구분, 등록번호, 등록일, 수신자, 제목, 기안자, 분류번호 등의 7개로 정의하였다. 본 연구에서 설계된 토픽맵 기반의 검색시스템의 관계적 속성은 대규모 기록물을 쉽게 탐색하고 지식의 우연한 발견을 가능하게 할 것으로 기대된다.
웹2.0환경에서의 핵심적인 기술은 태깅이며, 현재 블로그와 같은 웹 문서에서부터 이미지, 동영상 등과 같은 멀티미디어 데이터에 이르기까지 폭넓게 적용되고 있다. 그러나 태깅에 사용된 태그가 정보 검색에 재사용되어 검색의 효율성을 극대화 시킬 것이라는 기대와는 달리 실제로는 태그가 가지는 근본적인 한계들로 인해 만족스럽지 못한 검색결과가 나타나고 있다. 이에 본 연구에서는 태그 클러스터링을 통한 이미지 검색에 대한 선행연구를 기반으로 의미론적 지식체계인 토픽맵 생성 시스템을 설계 및 구현하였다. 구현 결과 클러스터 내의 태그 정보들은 토픽맵에서의 토픽으로 자동 생성되었으며, 생성된 토픽맵의 토픽들 간에는 WordNet을 적용하여 의미연관관계를 부여하였다. 또한 토픽 쌍에 적합한 어커런스 정보들을 추출하여 토픽들에 부여함으로서 의미론적 지식체계인 토픽맵을 생성하였다. 이와 같이 생성된 토픽맵은 사용자의 정보검색 요구에 대한 시맨틱 내비게이션의 제공을 가능하게 할 뿐만 아니라 풍부한 정보제공이 가능하다.
최근 검색엔진의 효율성을 향상시키고 검색결과에 있어서 사용자들의 요구사항을 충족시키기 위한 연구들이 활발히 수행되고 있으며, 많은 방법론들이 제시되고 있다. 이는 방대한 정보 속에서 사용자의 검색 의도에 맞는 정보를 효과적으로 제공하는 것을 그 목표로 한다. 특히 본 논문에서는 검색하고자 하는 토픽별 사용자의 인적 속성들이 미치는 영향력을 기반으로 사용자간 소셜 관계 지수(SRV : Social Relationship Value)를 산정하는 방법을 제안한다. 소셜 관계 지수란 인간의 내재적인 특성을 수치로 산정한 것으로, 웹 사용자들에게 있어서는 검색 성향의 유사정도와 직결된다. 따라서 검색하고자 하는 토픽별 개인 성향의 유사정도를 수치로 부여하고 유사성이 높은 사람들의 검색 정보를 이용하면 사용자에 보다 만족된 검색결과를 제공할 수 있다. 본 연구에서는 구글 디렉터리(Google directory)의 정제된 각 토픽별 하위 범주(category)에 대해 선택 결과가 같은 사람들을 대상으로 인적 속성을 분석하고, 그 영향력을 가중치로 적용해 산정된 소셜 관계 지수와 사용자들의 검색 패턴을 비교 하였다. 그 결과 특정인을 기준으로 소셜 관계 지수가 높은 사람들의 검색 패턴이 매우 유사함을 확인 하였다. 이를 통해 토픽별 개인 간 연결 강도가 강할수록, 즉 유사성이 높은 사용자간에는 검색 패턴 또한 유사함을 검증 할 수 있었다.
본 논문은 두 가지 주제에 대해 연구한다. 첫 번째는 수학식 검색에 대한 것이다. 웹에는 양질의 수학식 데이터가 마크업 언어 형태로 저장되어 있으며 이를 활용하기 위한 연구들이 활발히 진행되고 있다. 본 연구에서는 MathML (Mathematical Markup Language)로 저장된 수학식 데이터를 일반 질의어를 이용하여 검색한다. 두 번째 주제는 토픽 모델(topic model)로 검색 성능을 향상시키는 방법에 대한 것이다. 먼저 수학식 데이터를 일반 자연어 문장으로 변환한 후 Indri 시스템을 이용하여 검색을 수행하고, 토픽 모델을 이용하여 미리 산출된 스코어를 적용하여 검색 순위를 재랭킹한 결과, MRR 기준 평균 5%의 성능을 향상시킬 수 있었다.
현재 정보검색분야에서는 검색도구로써 시소러스가 갖는 장점에도 불구하고 기존에 개발된 시소러스의 유지관리와 활용이 극히 제한적으로 이루어지고 있기 때문이다. 왜냐하면 정보의 급격한 증가로 인하여 전통적인 시소러스의 구조와 유지관리, 활용기법으로는 현대 정보의 홍수 현상에 적극적으로 대처하는데 한계에 직면하였기 때문이다. 이러한 한계점을 극복하기 위해 토픽맵의 구축알고리즘이 절대적으로 필요하였다. 이에 따라 본 연구에서는 토픽맵의 기본요소인 토픽과 대상물, 연관관계, 토픽타입 등을 이용한 시소러스 구조화 알고리즘을 제안하였다. 특히 토픽맵의 기본 요소가운데 대상물(occurrence)은 시소러스의 검색효율가운데 정도율의 확보를 가능하게 하며, 시소러스의 구축에 필요한 지식베이스의 역할을 수행하는 주요한 기법임을 확인하였다.
"소셜 네트워크(Social Network)와 검색(Search)의 만남"은 현재 인터넷 상에서 매우 의미 있는 두 영역의 결합이다. 이와 같은 두 영역의 결합을 통해 소셜 네트워크 내에서 친구들의 생각이나 관심사 및 활동을 검색하고 공유함으로써 검색의 효율성과 적합성을 높이기 위한 연구들이 활발히 수행되고 있다. 본 논문에서는 일반적인 소셜 관계 랭크(SRR : Social Relation Rank) 및 토픽이 반영된 소셜 관계 랭크(TS_SRR : Topic Sensitive_Social Relation Rank) 알고리즘을 제안한다. SRR은 소셜 네트워크 내에 존재하는 웹 사용자들의 내재적인 특성 및 검색 성향 등에 대한 관련성(또는 유사정도)을 수치로 산정한 '소셜 관계 지수(SRV : Social Relation Value)'에 랭킹(Ranking)을 부여한 것을 의미한다. 제안하는 알고리즘의 검색 적용 가능성을 검증하기 위해 첫째, 웹 사용자간 직접 또는 간접적인 연결로 구성된 소셜네트워크를 구성 한다. 둘째, 웹 사용자들의 속성에 내재된 정보를 이용하여 토픽별 SRV를 산정한 후 랭킹을 부여하고, 토픽별 변화되는 랭킹에 따라 소셜 네트워크를 재구성 한다. 마지막으로 (TS_)SRR과 웹 사용자들의 검색 패턴(Search Pattern)을 비교 실험 한다. 실험 결과 (TS_)SRR이 높은 웹 사용자 간에는 검색 패턴 또한 유사함을 확인 하였다. 결론적으로 (TS_)SRR 알고리즘을 기반으로 관심분야에 연관성이 높은, 즉 상위에 랭크 된 웹 사용자들을 검색하여 검색 패턴을 공유 또는 상속받는 다면 개인화 검색(Personalized Search) 및 소셜 검색(Social Search)의 효율성과 신뢰성 향상에 기여 할 수 있다.
서브토픽 마이닝은 입력 질의에서 나타날 수 있는 검색 의도들의 중의성 해소 및 보다 명확한 의도 전달을 위해 관련 서브토픽들을 연관성, 선호도, 다양성을 고려하여 추출 및 순위화하는 것을 말한다. 본 논문은 웹 자원의 활용에 대한 기존 연구의 한계점을 명시하고, 이를 극복하기 위해 계층적 검색 의도와 웹 자원을 기반으로 한 2계층 구조의 서브토픽 마이닝 방법론을 제안한다. 우리는 서브토픽 마이닝 평가 대회에서 제공한 웹 문서 및 각 자원의 특성을 고려하여 제 2계층 서브토픽들을 추출, 확장 및 재순위화하고, 넓은 검색 의도를 가진 서브토픽 내의 단어들은 제 1계층 서브토픽들을 구성하는데 활용하였다. 본 방법론은 관련 평가 대회에서 최고 성능을 보인 기존 연구들의 결과들과 비교했을 때, 대부분의 평가 척도에서 높은 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.