• 제목/요약/키워드: 토픽 검색

검색결과 131건 처리시간 0.029초

소셜 검색 향상을 위한 토픽별 인적속성의 영향력 산출 (Assessing Influence of Human Factors according to Topics for Enhancing Social Search)

  • 권오상;박건우;이상훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 추계학술발표대회
    • /
    • pp.142-145
    • /
    • 2010
  • 정보의 양이 폭발적으로 증가함에 따라 방대한 정보 속에서 사용자의 검색 의도에 맞는 정보를 효과적으로 제공하기란 매우 어려워졌다. 따라서 웹 사용자들의 요구사항을 충족시키기 위한 연구들이 활발히 수행되고 있으며, 많은 방법론들이 제시되고 있다. 본 논문에서는 회귀분석이라는 통계학적 기법을 통해 검색 토픽에 대한 사용자의 인적속성들이 미치는 영향력을 산출하였다. 이는 인간이 가진 내재적 특성이 토픽별 검색 성향과 어떠한 연관관계가 있는지를 규명한 것이다. 또한 특정 토픽에 대해 영향력이 높은 인적속성의 일치 여부가 해당 토픽에 대한 사용자 검색성향의 유사정도와 매우 큰 상관관계가 있는 것을 증명하였다. 이와 같은 사실을 기반으로 사용자가 특정 토픽에 대해 검색 시 해당 토픽에 대해 영향력이 높은 인적속성을 확인하고, 이 속성이 일치하는 사람들의 검색 정보를 제공한다면, 사용자는 보다 만족된 검색결과를 얻을 수 있을 것이다.

웹 사이트 구조를 이용한 토픽 검색 연구 (An Experimental Study on Topic Distillation Using Web Site Structure)

  • 이지숙;정영미
    • 정보관리학회지
    • /
    • 제24권3호
    • /
    • pp.201-218
    • /
    • 2007
  • 이 연구에서는 TRBC이 제시한 토픽 검색의 정의에 따라 질의에 적합한 웹 사이트를 검색하는 효과적인 토픽 검색 알고리즘을 제안하고 실험을 통해 그 성능을 평가하였다. 이 연구의 토픽 검색 알고리즘은 먼저 질의에 대한 웹 페이지 검색 결과로부터 적합한 웹 사이트를 선정한 다음, 선정된 사이트의 구조를 이용하여 질의에 대한 적합성 점수를 산출한다. TREC의 .GOV 실험 문헌 집단과 TREC-2004 실험의 질의 및 적합문헌 리스트를 이용한 검색 실험 결과 이 토픽 검색 알고리즘은 상위 10위 안에 최소 2개 이상의 적합 사이트를 검색하여 비교적 높은 수준의 성능을 보였다. 또한 TREC-2004의 적합문헌 리스트 분석을 통해 적합문헌 선정에 토픽 검색의 정의가 엄격하게 적용되지 않은 경우가 있음을 확인하고, 수정된 적합문헌 리스트를 이용하여 토픽 검색 성능을 재평가한 결과 이 연구에서 제안한 토픽 검색 알고리즘의 성능이 월등히 향상되었다.

MeSH 기반의 LDA 토픽 모델을 이용한 검색어 확장 (The MeSH-Term Query Expansion Models using LDA Topic Models in Health Information Retrieval)

  • 유석진
    • 한국도서관정보학회지
    • /
    • 제52권1호
    • /
    • pp.79-108
    • /
    • 2021
  • 헬스 분야에서 정보 검색의 어려움 중의 하나는 일반 사용자들이 전문적인 용어들을 이해하기가 어렵다는 점이다. 헬스와 관련된 전문 용어들은 일반 사용자들이 검색어로 사용하기 어렵기 때문에 이러한 전문 용어들이 자동적으로 검색어에 더해질 수 있다면 좀 더 검색의 효과를 높일 수 있을 것이다. 제안된 검색어 확장 모델은 전문 용어를 포함하는 MeSH(Medical Subject Headings)를 검색어 확장을 위한 단어 후보 군으로 이용하였다. 문서들은 MeSH용어들로 표현이 되고 이렇게 표현된 문서들의 집합에 대해서 LDA(Latent Dirichlet Analysis) 토픽들이 생성된 후, (검색어+초기 검색어에 의해 검색된 상위 k개 문서들)에 연관된 토픽 단어들이 원래의 검색어를 확장하는 데 쓰여졌다. MeSH로 구성된 토픽 단어들은 임의로 정해진 토픽 확률 임계값과 토픽을 구성하는 단어의 확률 임계값보다 높았을 때 초기의 검색어에 포함되었다. 특정수의 토픽을 갖는 LDA 모델에서 이러한 적절한 임계값의 설정을 통해 선택된 토픽 단어들은 검색어 확장에 이용되어 검색시에 infAP(inferred Average Precision)와 infNDCG(inferred Normalized Discounted Cumulative Gain)를 높이는데 효과적으로 작용하였다. 또한 토픽 확률값과 토픽 단어의 확률값을 곱하여 계산된 토픽 단어의 스코어가 높은 상위 k개의 단어를 검색어를 확장하는 데 이용하였을 때에도 검색의 성능이 향상될 수 있음을 확인하였다.

대학 학사행정 기록물의 토픽맵 기반 검색시스템 설계에 관한 연구 (A Study on the Design of a Topic Map-based Retrieval System for the Academic Administration Records of Universities)

  • 신지유;정영미
    • 한국기록관리학회지
    • /
    • 제16권1호
    • /
    • pp.175-193
    • /
    • 2016
  • 토픽맵은 방대한 양의 정보를 의미론적 연관관계에 따라 분류, 조직하여 탐색할 수 있도록 효율적인 검색을 제공하기 위해 제안된 도구이다. 본 연구는 대학의 교직원들이 학사행정 대학기록물 검색시 의미기반 검색을 통해 보다 적합한 검색결과를 제공받을 수 있도록 토픽맵 기반 대학기록물 검색시스템을 설계한 것이고 그 과정을 보여준다. 본 연구를 위해 D대학의 2년간 학사행정 기록물들이 사용되었고 의미관계를 구조화하기 위해 대학의 업무 기능 분류표를 참조하였다. 온토피아 옴니게이트를 사용하여 토픽맵을 구축하였다. 대학의 학사행정 관련 기록물의 토픽은 총 626개로 나타났고, 토픽 타입은 학사업무, 교직원, 학적, 대학, 학생, 기타로 구성하였다. 관계는 토픽들간의 연관으로 6개 유형이 나타났고, 어커런스 타입은 등록구분, 등록번호, 등록일, 수신자, 제목, 기안자, 분류번호 등의 7개로 정의하였다. 본 연구에서 설계된 토픽맵 기반의 검색시스템의 관계적 속성은 대규모 기록물을 쉽게 탐색하고 지식의 우연한 발견을 가능하게 할 것으로 기대된다.

태그 기반 토픽맵 생성 시스템의 설계 및 구현 (Design and Implementation of Topic Map Generation System based Tag)

  • 이시화;이만형;황대훈
    • 한국멀티미디어학회논문지
    • /
    • 제13권5호
    • /
    • pp.730-739
    • /
    • 2010
  • 웹2.0환경에서의 핵심적인 기술은 태깅이며, 현재 블로그와 같은 웹 문서에서부터 이미지, 동영상 등과 같은 멀티미디어 데이터에 이르기까지 폭넓게 적용되고 있다. 그러나 태깅에 사용된 태그가 정보 검색에 재사용되어 검색의 효율성을 극대화 시킬 것이라는 기대와는 달리 실제로는 태그가 가지는 근본적인 한계들로 인해 만족스럽지 못한 검색결과가 나타나고 있다. 이에 본 연구에서는 태그 클러스터링을 통한 이미지 검색에 대한 선행연구를 기반으로 의미론적 지식체계인 토픽맵 생성 시스템을 설계 및 구현하였다. 구현 결과 클러스터 내의 태그 정보들은 토픽맵에서의 토픽으로 자동 생성되었으며, 생성된 토픽맵의 토픽들 간에는 WordNet을 적용하여 의미연관관계를 부여하였다. 또한 토픽 쌍에 적합한 어커런스 정보들을 추출하여 토픽들에 부여함으로서 의미론적 지식체계인 토픽맵을 생성하였다. 이와 같이 생성된 토픽맵은 사용자의 정보검색 요구에 대한 시맨틱 내비게이션의 제공을 가능하게 할 뿐만 아니라 풍부한 정보제공이 가능하다.

토픽별 인간 속성의 영향력 기반 소셜 관계 지수 산정 (Social Relationship Value Computation based on the Influence of Human Attributes classified by Topics)

  • 권오상;박건우;이상훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 춘계학술발표대회
    • /
    • pp.884-887
    • /
    • 2010
  • 최근 검색엔진의 효율성을 향상시키고 검색결과에 있어서 사용자들의 요구사항을 충족시키기 위한 연구들이 활발히 수행되고 있으며, 많은 방법론들이 제시되고 있다. 이는 방대한 정보 속에서 사용자의 검색 의도에 맞는 정보를 효과적으로 제공하는 것을 그 목표로 한다. 특히 본 논문에서는 검색하고자 하는 토픽별 사용자의 인적 속성들이 미치는 영향력을 기반으로 사용자간 소셜 관계 지수(SRV : Social Relationship Value)를 산정하는 방법을 제안한다. 소셜 관계 지수란 인간의 내재적인 특성을 수치로 산정한 것으로, 웹 사용자들에게 있어서는 검색 성향의 유사정도와 직결된다. 따라서 검색하고자 하는 토픽별 개인 성향의 유사정도를 수치로 부여하고 유사성이 높은 사람들의 검색 정보를 이용하면 사용자에 보다 만족된 검색결과를 제공할 수 있다. 본 연구에서는 구글 디렉터리(Google directory)의 정제된 각 토픽별 하위 범주(category)에 대해 선택 결과가 같은 사람들을 대상으로 인적 속성을 분석하고, 그 영향력을 가중치로 적용해 산정된 소셜 관계 지수와 사용자들의 검색 패턴을 비교 하였다. 그 결과 특정인을 기준으로 소셜 관계 지수가 높은 사람들의 검색 패턴이 매우 유사함을 확인 하였다. 이를 통해 토픽별 개인 간 연결 강도가 강할수록, 즉 유사성이 높은 사용자간에는 검색 패턴 또한 유사함을 검증 할 수 있었다.

토픽 모델을 이용한 수학식 검색 결과 재랭킹 (Reranking Search Results for Mathematical Equation Retrieval Using Topic Models)

  • 양선;고영중
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2013년도 제25회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.77-81
    • /
    • 2013
  • 본 논문은 두 가지 주제에 대해 연구한다. 첫 번째는 수학식 검색에 대한 것이다. 웹에는 양질의 수학식 데이터가 마크업 언어 형태로 저장되어 있으며 이를 활용하기 위한 연구들이 활발히 진행되고 있다. 본 연구에서는 MathML (Mathematical Markup Language)로 저장된 수학식 데이터를 일반 질의어를 이용하여 검색한다. 두 번째 주제는 토픽 모델(topic model)로 검색 성능을 향상시키는 방법에 대한 것이다. 먼저 수학식 데이터를 일반 자연어 문장으로 변환한 후 Indri 시스템을 이용하여 검색을 수행하고, 토픽 모델을 이용하여 미리 산출된 스코어를 적용하여 검색 순위를 재랭킹한 결과, MRR 기준 평균 5%의 성능을 향상시킬 수 있었다.

  • PDF

시소러스와 토픽맵의 연관성 연구 (A Study on the Association between Thesaurus and Topic Map)

  • 남영준
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2005년도 제12회 학술대회 논문집
    • /
    • pp.403-408
    • /
    • 2005
  • 현재 정보검색분야에서는 검색도구로써 시소러스가 갖는 장점에도 불구하고 기존에 개발된 시소러스의 유지관리와 활용이 극히 제한적으로 이루어지고 있기 때문이다. 왜냐하면 정보의 급격한 증가로 인하여 전통적인 시소러스의 구조와 유지관리, 활용기법으로는 현대 정보의 홍수 현상에 적극적으로 대처하는데 한계에 직면하였기 때문이다. 이러한 한계점을 극복하기 위해 토픽맵의 구축알고리즘이 절대적으로 필요하였다. 이에 따라 본 연구에서는 토픽맵의 기본요소인 토픽과 대상물, 연관관계, 토픽타입 등을 이용한 시소러스 구조화 알고리즘을 제안하였다. 특히 토픽맵의 기본 요소가운데 대상물(occurrence)은 시소러스의 검색효율가운데 정도율의 확보를 가능하게 하며, 시소러스의 구축에 필요한 지식베이스의 역할을 수행하는 주요한 기법임을 확인하였다.

  • PDF

소셜 관계 랭크 및 토픽기반_소셜 관계 랭크 알고리즘; 소셜 검색을 향해 (SRR(Social Relation Rank) and TS_SRR(Topic Sensitive_Social Relation Rank) Algorithm; toward Social Search)

  • 박건우;정재학;이상훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.364-368
    • /
    • 2009
  • "소셜 네트워크(Social Network)와 검색(Search)의 만남"은 현재 인터넷 상에서 매우 의미 있는 두 영역의 결합이다. 이와 같은 두 영역의 결합을 통해 소셜 네트워크 내에서 친구들의 생각이나 관심사 및 활동을 검색하고 공유함으로써 검색의 효율성과 적합성을 높이기 위한 연구들이 활발히 수행되고 있다. 본 논문에서는 일반적인 소셜 관계 랭크(SRR : Social Relation Rank) 및 토픽이 반영된 소셜 관계 랭크(TS_SRR : Topic Sensitive_Social Relation Rank) 알고리즘을 제안한다. SRR은 소셜 네트워크 내에 존재하는 웹 사용자들의 내재적인 특성 및 검색 성향 등에 대한 관련성(또는 유사정도)을 수치로 산정한 '소셜 관계 지수(SRV : Social Relation Value)'에 랭킹(Ranking)을 부여한 것을 의미한다. 제안하는 알고리즘의 검색 적용 가능성을 검증하기 위해 첫째, 웹 사용자간 직접 또는 간접적인 연결로 구성된 소셜네트워크를 구성 한다. 둘째, 웹 사용자들의 속성에 내재된 정보를 이용하여 토픽별 SRV를 산정한 후 랭킹을 부여하고, 토픽별 변화되는 랭킹에 따라 소셜 네트워크를 재구성 한다. 마지막으로 (TS_)SRR과 웹 사용자들의 검색 패턴(Search Pattern)을 비교 실험 한다. 실험 결과 (TS_)SRR이 높은 웹 사용자 간에는 검색 패턴 또한 유사함을 확인 하였다. 결론적으로 (TS_)SRR 알고리즘을 기반으로 관심분야에 연관성이 높은, 즉 상위에 랭크 된 웹 사용자들을 검색하여 검색 패턴을 공유 또는 상속받는 다면 개인화 검색(Personalized Search) 및 소셜 검색(Social Search)의 효율성과 신뢰성 향상에 기여 할 수 있다.

계층적 검색 의도와 웹 자원을 활용한 2계층 구조의 서브토픽 마이닝 (Subtopic Mining of Two-level Hierarchy Based on Hierarchical Search Intentions and Web Resources)

  • 김세종;이종혁
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권2호
    • /
    • pp.83-88
    • /
    • 2016
  • 서브토픽 마이닝은 입력 질의에서 나타날 수 있는 검색 의도들의 중의성 해소 및 보다 명확한 의도 전달을 위해 관련 서브토픽들을 연관성, 선호도, 다양성을 고려하여 추출 및 순위화하는 것을 말한다. 본 논문은 웹 자원의 활용에 대한 기존 연구의 한계점을 명시하고, 이를 극복하기 위해 계층적 검색 의도와 웹 자원을 기반으로 한 2계층 구조의 서브토픽 마이닝 방법론을 제안한다. 우리는 서브토픽 마이닝 평가 대회에서 제공한 웹 문서 및 각 자원의 특성을 고려하여 제 2계층 서브토픽들을 추출, 확장 및 재순위화하고, 넓은 검색 의도를 가진 서브토픽 내의 단어들은 제 1계층 서브토픽들을 구성하는데 활용하였다. 본 방법론은 관련 평가 대회에서 최고 성능을 보인 기존 연구들의 결과들과 비교했을 때, 대부분의 평가 척도에서 높은 성능을 보였다.