• Title/Summary/Keyword: 토지피복자료

Search Result 528, Processing Time 0.019 seconds

Identification of Bird Community Characteristics by Habitat Environment of Jeongmaek Using Self-organizing Map - Case Stuty Area Geumnamhonam and Honam, Hannamgeumbuk and Geumbuk, Naknam Jeongmaek, South Korea - (자기조직화지도를 활용한 정맥의 서식지 환경에 따른 조류 군집 특성 파악 - 금남호남 및 호남정맥, 한남금북 및 금북정맥, 낙남정맥을 대상으로 -)

  • Hwang, Jong-Kyeong;Kang, Te-han;Han, Seung-Woo;Cho, Hae-Jin;Nam, Hyung-Kyu;Kim, Su-Jin;Lee, Joon-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.4
    • /
    • pp.377-386
    • /
    • 2021
  • This study was conducted to provide basic data for habitat management and preservation of Jeongmaek. A total of 18 priority research areas were selected with consideration to terrain and habitat environment, and 54 fixed plots were selected for three types of habits: development, valley, and forest road and ridge. The survey was conducted in each season (May, August, and October), excluding the winter season, from 2016 to 2018. The distribution analysis of birds observed in each habitat type using a self-organizing map (SOM) classified them into a total of four groups (MRPP, A=0.12, and p <0.005). The comparative analysis of the number of species, the number of individuals, and the species diversity index for each SOM group showed that they were all the highest in group III (Kruskal-Wallis, the number species: x2 = 13.436, P <0.005; the number of individuals: x2 = 8.229, P <0.05; the species diversity index: x2 = 17.115, P <0.005). Moreover, the analysis by applying the land cover map to the random forest model to examine the index species of each group and identify the characteristics of the habitat environment showed a difference in the ratio of the habitat environment and the indicator species among the four groups. The index species analysis identified a total of 18 bird species as the indicator species in three groups except for group II. When applying the random forest model and indicator species analysis to the results of classification into four groups using the SOM, the composition of the indicator species by the group showed a correlation with the habitat characteristics of each group. Moreover, the distribution patterns and densities of observed species were clearly distinguished according to the dominant habitat for each group. The results of the analysis that applied the SOM, indicator species, and random forest model together can derive useful results for the characterization of bird habitats according to the habitat environment.

Calculation of Surface Broadband Emissivity by Multiple Linear Regression Model (다중선형회귀모형에 의한 지표면 광대역 방출율 산출)

  • Jo, Eun-Su;Lee, Kyu-Tae;Jung, Hyun-Seok;Kim, Bu-Yo;Zo, Il-Sung
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.269-282
    • /
    • 2017
  • In this study, the surface broadband emissivity ($3.0-14.0{\mu}m$) was calculated using the multiple linear regression model with narrow bands (channels 29, 30, and 31) emissivity data of the Moderate Resolution Imaging Spectroradiometer (MODIS) on Earth Observing System Terra satellite. The 307 types of spectral emissivity data (123 soil types, 32 vegetation types, 19 types of water bodies, 43 manmade materials, and 90 rock) with MODIS University of California Santa Barbara emissivity library and Advanced Spaceborne Thermal Emission & Reflection Radiometer spectral library were used as the spectral emissivity data for the derivation and verification of the multiple linear regression model. The derived determination coefficient ($R^2$) of multiple linear regression model had a high value of 0.95 (p<0.001) and the root mean square error between these model calculated and theoretical broadband emissivities was 0.0070. The surface broadband emissivity from our multiple linear regression model was comparable with that by Wang et al. (2005). The root mean square error between surface broadband emissivities calculated by models in this study and by Wang et al. (2005) during January was 0.0054 in Asia, Africa, and Oceania regions. The minimum and maximum differences of surface broadband emissivities between two model results were 0.0027 and 0.0067 respectively. The similar statistical results were also derived for August. The surface broadband emissivities by our multiple linear regression model could thus be acceptable. However, the various regression models according to different land covers need be applied for the more accurate calculation of the surface broadband emissivities.

Sensitivity Analysis for CAS500-4 Atmospheric Correction Using Simulated Images and Suggestion of the Use of Geostationary Satellite-based Atmospheric Parameters (모의영상을 이용한 농림위성 대기보정의 주요 파라미터 민감도 분석 및 타위성 산출물 활용 가능성 제시)

  • Kang, Yoojin;Cho, Dongjin;Han, Daehyeon;Im, Jungho;Lim, Joongbin;Oh, Kum-hui;Kwon, Eonhye
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1029-1042
    • /
    • 2021
  • As part of the next-generation Compact Advanced Satellite 500 (CAS500) project, CAS500-4 is scheduled to be launched in 2025 focusing on the remote sensing of agriculture and forestry. To obtain quantitative information on vegetation from satellite images, it is necessary to acquire surface reflectance through atmospheric correction. Thus, it is essential to develop an atmospheric correction method suitable for CAS500-4. Since the absorption and scattering characteristics in the atmosphere vary depending on the wavelength, it is needed to analyze the sensitivity of atmospheric correction parameters such as aerosol optical depth (AOD) and water vapor (WV) considering the wavelengths of CAS500-4. In addition, as CAS500-4 has only five channels (blue, green, red, red edge, and near-infrared), making it difficult to directly calculate key parameters for atmospheric correction, external parameter data should be used. Therefore, thisstudy performed a sensitivity analysis of the key parameters (AOD, WV, and O3) using the simulated images based on Sentinel-2 satellite data, which has similar wavelength specifications to CAS500-4, and examined the possibility of using the products of GEO-KOMPSAT-2A (GK2A) as atmospheric parameters. The sensitivity analysisshowed that AOD wasthe most important parameter with greater sensitivity in visible channels than in the near-infrared region. In particular, since AOD change of 20% causes about a 100% error rate in the blue channel surface reflectance in forests, a highly reliable AOD is needed to obtain accurate surface reflectance. The atmospherically corrected surface reflectance based on the GK2A AOD and WV was compared with the Sentinel-2 L2A reflectance data through the separability index of the known land cover pixels. The result showed that two corrected surface reflectance had similar Seperability index (SI) values, the atmospheric corrected surface reflectance based on the GK2A AOD showed higher SI than the Sentinel-2 L2A reflectance data in short-wavelength channels. Thus, it is judged that the parameters provided by GK2A can be fully utilized for atmospheric correction of the CAS500-4. The research findings will provide a basis for atmospheric correction of the CAS500-4 in the future.

Analysis of Urban Heat Island Intensity Among Administrative Districts Using GIS and MODIS Imagery (GIS 및 MODIS 영상을 활용한 행정구역별 도시열섬강도 분석)

  • SEO, Kyeong-Ho;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.2
    • /
    • pp.1-16
    • /
    • 2017
  • This study was conducted to analyze the urban heat island(UHI) intensity of South Korea by using Moderate Resolution Imaging Spectroradiometer(MODIS) satellite imagery. For this purpose, the metropolitan area was spatially divided according to land cover classification into urban and non-urban land. From the analysis of land surface temperature(LST) in South Korea in the summer of 2009 which was calculated from MODIS satellite imagery it was determined that the highest temperature recorded nationwide was $36.0^{\circ}C$, lowest $16.2^{\circ}C$, and that the mean was $24.3^{\circ}C$, with a standard deviation of $2.4^{\circ}C$. In order to analyze UHI by cities and counties, UHI intensity was defined as the difference in average temperature between urban and non-urban land, and was calculated through RST1 and RST2. The RST1 calculation showed scattered distribution in areas of high UHI intensity, whereas the RST2 calculation showed that areas of high UHI intensity were concentrated around major cities. In order to find an effective method for analyzing UHI by cities and counties, analysis was conducted of the correlation between the urbanization ratio, number of tropical heat nights, and number of heat-wave days. Although UHI intensity derived through RST1 showed barely any correlation, that derived through RST2 showed significant correlation. The RST2 method is deemed as a more suitable analytical method for measuring the UHI of urban land in cities and counties across the country. In cities and counties with an urbanization ratio of < 20%, the rate of increase for UHI intensity in proportion to increases in urbanization ratio, was very high; whereas this rate gradually declined when the urbanization ratio was > 20%. With an increase of $1^{\circ}C$ in RST2 UHI intensity, the number of tropical heat nights and heat wave days was predicted to increase by approximately five and 0.5, respectively. These results can be used for reference when predicting the effects of increased urbanization on UHI intensity.

RPC Correction of KOMPSAT-3A Satellite Image through Automatic Matching Point Extraction Using Unmanned AerialVehicle Imagery (무인항공기 영상 활용 자동 정합점 추출을 통한 KOMPSAT-3A 위성영상의 RPC 보정)

  • Park, Jueon;Kim, Taeheon;Lee, Changhui;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1135-1147
    • /
    • 2021
  • In order to geometrically correct high-resolution satellite imagery, the sensor modeling process that restores the geometric relationship between the satellite sensor and the ground surface at the image acquisition time is required. In general, high-resolution satellites provide RPC (Rational Polynomial Coefficient) information, but the vendor-provided RPC includes geometric distortion caused by the position and orientation of the satellite sensor. GCP (Ground Control Point) is generally used to correct the RPC errors. The representative method of acquiring GCP is field survey to obtain accurate ground coordinates. However, it is difficult to find the GCP in the satellite image due to the quality of the image, land cover change, relief displacement, etc. By using image maps acquired from various sensors as reference data, it is possible to automate the collection of GCP through the image matching algorithm. In this study, the RPC of KOMPSAT-3A satellite image was corrected through the extracted matching point using the UAV (Unmanned Aerial Vehichle) imagery. We propose a pre-porocessing method for the extraction of matching points between the UAV imagery and KOMPSAT-3A satellite image. To this end, the characteristics of matching points extracted by independently applying the SURF (Speeded-Up Robust Features) and the phase correlation, which are representative feature-based matching method and area-based matching method, respectively, were compared. The RPC adjustment parameters were calculated using the matching points extracted through each algorithm. In order to verify the performance and usability of the proposed method, it was compared with the GCP-based RPC correction result. The GCP-based method showed an improvement of correction accuracy by 2.14 pixels for the sample and 5.43 pixelsfor the line compared to the vendor-provided RPC. In the proposed method using SURF and phase correlation methods, the accuracy of sample was improved by 0.83 pixels and 1.49 pixels, and that of line wasimproved by 4.81 pixels and 5.19 pixels, respectively, compared to the vendor-provided RPC. Through the experimental results, the proposed method using the UAV imagery presented the possibility as an alternative to the GCP-based method for the RPC correction.

A comparative study of mosquito population density according to the Sejong City areas and old city and new city (세종특별자치시 전역과 구도심 및 신도심에 따른 모기 밀도 비교 연구)

  • Na, Sumi;Doh, Jiseon;Yang, Young Cheol;Ryu, Sungmin;Yi, Hoonbok
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.3
    • /
    • pp.362-373
    • /
    • 2021
  • This study was conducted to establish mosquito distribution density and habitat in Sejong city for the prevention of mosquito-borne infectious diseases. The overall distribution of mosquitoes in the Sejong City was investigated, and the population density of mosquitoes in the old and new city was analyzed. Mosquito populations were determined using MOSHOLE and Blacklight traps once a week overnight. We also compared the mosquito population density of the old city and the new city, and the daily mosquito population was calculated using the data from the smart mosquito trap(DMS). Of all the study sites, Geumnam-myeon had the highest number of mosquitoes captured, and the dominant species were Armigeres subalbatus and Culex pipienspallens. Mosquito species with the potential for transmitting diseases were mainly found in Yeonseo-myeon (106 individual), and Geumnam-myeon (101). Mosquito collection rates by MOSHOLE trap and Blacklight trap were 58.49% and 41.51%, respectively. We concluded that using CO2 would be the most suitable approach for collecting mosquitoes. The mosquito population density in the old city (92.05±7.04) was approximately twice that of the new city(51.50±4.05). Since Sejong City is divided into old city and new city, it is difficult to spot remarkable effects in a standardized way. For effective quarantine, differentiation of quarantine must be established. This study results provide a basis for Sejong City's integrated mosquito control guidelines, and therefore effective control of which we believe will help control the spread of mosquito-borne diseases and reduce damage from mosquitoes.

Analysis of Spatial Correlation between Surface Temperature and Absorbed Solar Radiation Using Drone - Focusing on Cool Roof Performance - (드론을 활용한 지표온도와 흡수일사 간 공간적 상관관계 분석 - 쿨루프 효과 분석을 중심으로 -)

  • Cho, Young-Il;Yoon, Donghyeon;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1607-1622
    • /
    • 2022
  • The purpose of this study is to determine the actual performance of cool roof in preventing absorbed solar radiation. The spatial correlation between surface temperature and absorbed solar radiation is the method by which the performance of a cool roof can be understood and evaluated. The research area of this study is the vicinity of Jangyu Mugye-dong, Gimhae-si, Gyeongsangnam-do, where an actual cool roof is applied. FLIR Vue Pro R thermal infrared sensor, Micasense Red-Edge multi-spectral sensor and DJI H20T visible spectral sensor was used for aerial photography, with attached to the drone DJI Matrice 300 RTK. To perform the spatial correlation analysis, thermal infrared orthomosaics, absorbed solar radiation distribution maps were constructed, and land cover features of roof were extracted based on the drone aerial photographs. The temporal scope of this research ranged over 9 points of time at intervals of about 1 hour and 30 minutes from 7:15 to 19:15 on July 27, 2021. The correlation coefficient values of 0.550 for the normal roof and 0.387 for the cool roof were obtained on a daily average basis. However, at 11:30 and 13:00, when the Solar altitude was high on the date of analysis, the difference in correlation coefficient values between the normal roof and the cool roof was 0.022, 0.024, showing similar correlations. In other time series, the values of the correlation coefficient of the normal roof are about 0.1 higher than that of the cool roof. This study assessed and evaluated the potential of an actual cool roof to prevent solar radiation heating a rooftop through correlation comparison with a normal roof, which serves as a control group, by using high-resolution drone images. The results of this research can be used as reference data when local governments or communities seek to adopt strategies to eliminate the phenomenon of urban heat islands.

A study on spatial onset characteristics of flash drought based on GLDAS evaporative stress in the Korean Peninsula (GLDAS 증발 스트레스 기반 한반도 돌발가뭄의 공간적 발생 특성 연구)

  • Kang, Minsun;Jeong, Jaehwan;Lee, Seulchan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.631-639
    • /
    • 2023
  • Flash drought (FD), characterized by the rapid onset and intensification, can significantly impact ecosystems and induce immediate water stress. A more comprehensive understanding of the causes and characteristics of FD events is required to enhance drought monitoring. Therefore, we investigated the FD events took place over the Korean peninsula using Global Land Data Assimilation System (GLDAS) data from 2012 to 2022. We first detected FD events using the stress-based method (Standardized Evaporative Stress Ratio, SESR), and analyzed the frequency and duration of FDs. The FD events were classified into three cases based on the variations in Actual Evapotranspiration (AET) and potential Evapotranspiration (PET), and spatially analyzed. Results revealed that there are regional disparities in frequency and duration of FDs, with a mean frequency of 6.4 and duration of 31 days. When classified into Case 1 (normal condition), Case 2 (AET-driven), and Case 3 (PET-driven), we found that Case 2 FDs emerged approximately 1.5 times more frequently than those driven by PET (Case 3) across the Korean peninsula. Case 2 FDs were found to be induced under water-limited conditions, and led both AET and PET to be decreased. Conversely, Case 3 FDs occurred under energy-limited conditions, with increase in both. Case 2 FDs predominantly affected the northwestern and central-southern agricultural regions, while Case 3 occurred in the eastern region, characterized by forested land cover. These findings offers insights into our understanding of FDs over the Korean peninsula, considering climate factors, land cover, and water availability.