Proceedings of the Korean Environmental Sciences Society Conference
/
2003.05a
/
pp.351-353
/
2003
위성데이터를 이용한 토지피복분류에 의한 녹지의 경년변화의 특성 및 표고데이터와의 중첩에 의한 CG의 작성에 의해 경관으로서의 토지피복의 경년별 변화특성을 파악하였다. 1989년에서 2000년에 걸쳐 녹지는 약 3.9% 감소하였으며, 경관화상을 통해서는 약 2.3% 감소한 것으로 분석되었다 평면적인 녹지의 감소가 경관상의 녹지량의 감소율과 깊은 관련이 있는 것이 확인되었다.
Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
/
2006.05a
/
pp.169-174
/
2006
도시지역의 급변하는 토지이용의 패턴 및 토지피복상태 등의 도시환경의 변화를 분석하는 것은 도시계획 및 개발계획을 기획, 입안하는데 중요한 자료로 활용될 수 있을 것이다. 본 연구에서는 구미시를 대상지역으로 하는 Landsat TM과 Landsat $ETM^+$ 인공위성 영상데이터로부터 토지피복/토지이용 분류를 수행함으로써 18년간의 광역적 도시변화를 탐지하였다. 또한 도시의 발전과 지표면 온도의 상관성을 알아보기 위하여 열적외선 파장영역을 이용하여 온도를 추출하였다. 시가지 확장으로 인한 지표면 온도의 상승을 확인하고 이를 통해 토지이용/토지피복의 상관관계 분석 및 식생지수분포를 비교하였다.
The purpose of this study was to determine ways to increase efficiency in constructing and verifying artificial intelligence learning data on land cover using aerial and satellite images, and in applying the data to AI learning algorithms. To this end, multi-resolution datasets of 0.51 m and 10 m each for 8 categories of land cover were constructed using high-resolution aerial images and satellite images obtained from Sentinel-2 satellites. Furthermore, fine data (a total of 17,000 pieces) and coarse data (a total of 33,000 pieces) were simultaneously constructed to achieve the following two goals: precise detection of land cover changes and the establishment of large-scale learning datasets. To secure the accuracy of the learning data, the verification was performed in three steps, which included data refining, annotation, and sampling. The learning data that wasfinally verified was applied to the semantic segmentation algorithms U-Net and DeeplabV3+, and the results were analyzed. Based on the analysis, the average accuracy for land cover based on aerial imagery was 77.8% for U-Net and 76.3% for Deeplab V3+, while for land cover based on satellite imagery it was 91.4% for U-Net and 85.8% for Deeplab V3+. The artificial intelligence learning datasets on land cover constructed using high-resolution aerial and satellite images in this study can be used as reference data to help classify land cover and identify relevant changes. Therefore, it is expected that this study's findings can be used in the future in various fields of artificial intelligence studying land cover in constructing an artificial intelligence learning dataset on land cover of the whole of Korea.
토지피복은 지표면의 물리적 상태 및 사용 용도에 따른 특성을 나타내는 기본적인 정보로 농업, 환경, 재해, 수자원 등 다양한 분야에서 이용되고 있다. 식생활동으로 인해 생기는 증산과 토양에서 일어나는 증발을 증발산이라 통칭하며, 이의 정확한 산정은 수리, 수문학적 유역 분석에 중요하다. 정확한 증발산의 산정을 위해서는 기압, 온도 등 기상 인자의 역할이 중요하지만 토지피복 특성 역시 증발산에 큰 영향을 주므로 중요한 요소 중 하나이다. 이는 인간의 활동에 의해 점차적으로 빠르게 변화하는 추세이므로 인공위성 영상을 이용하여 효율적인 정보의 취합 및 관리가 필수적이다. 따라서 본 연구에서는 Landsat 5 TM(Thematic Mapper) 영상을 기반으로 무감독 분류법을 이용하여 ISODATA Training과 Masking기법을 사용하여 한강 유역의 토지피복도를 산정하였다. 본 연구에서는 연구 대상 지역의 영상을 사용하였고, 토지의 분류는 수역, 시가, 나지, 습지, 초지, 산림, 농지의 7가지로 분류하였다. 그 결과 우리나라의 대다수를 이루는 수역, 시가, 산림, 농지에 대한 높은 정확도를 갖는 토지피복도를 얻을 수 있었으며, 이는 군사경계 외부의 지역도 포함된 결과이다. 단, 나지와 습지, 초지 부분의 정확도는 비교적 떨어지나, 우리나라의 토지특성상 많은 비율을 차지하고 있지 않으므로 신뢰할 만한 결과라 할 수 있겠다. 이 결과와 외부 자료를 이용하여 보다 향상된 토지피복도를 만들 수 있을 것이다. 이를 토대로 군사지역 등 접근이 어려운 지역의 토지피복 현황을 파악하여 정확한 증발산 산정에 도움이 되고자 한다.
Journal of the Korean Association of Geographic Information Studies
/
v.26
no.1
/
pp.69-88
/
2023
Efficient spatial planning is one of the necessary factors to successfully respond to climate change. And researchers often use LULC(Land-Use/Cover) data to conduct land use and spatial planning research. However, LULC data has a limited number of grades related to urban surface, so each different urban structure appearing in several cities is not easily analyzed with existing land cover products. This limitation of land cover data seems to be overcome through LCZ(Local Climate Zone) data used in the urban heat island field. Therefore, this study aims to first discuss whether LCZ data can be applied not only to urban heat island fields but also to other fields, and secondly, whether LCZ data still have problems with existing LULC data. Research methodology is largely divided into two categories. First, through literature review, studies in the fields of climate, land use, and urban spatial structure related to LCZ are synthesized to analyze what research LCZ data is currently being used, and how it can be applied and utilized in the fields of land use and urban spatial structure. Next, the GIS spatial analysis methodology is used to analyze whether LCZ still has several errors that are found in the LULC.
Journal of the Korean Association of Geographic Information Studies
/
v.6
no.2
/
pp.80-91
/
2003
In this research, re-using band ratio data was proposed and examined as a method of raising the accuracy in landcover classification which is using satellite data.In order to determine the band which is used to calculation in the classified item, the six bands except the band 6 were combined with the band in which combination is possible and the landcover classification by MLC of supervised classification was carried out. In the result of landcover classification which is combined with forty nine combination, Two bands which were mostly used by band combination in the accuracy belonged inside the 10th place of a higher rank were selected and also calculated. landcover classification were performed again after the calculation result had been recombinated from the research. In addition, the new landcover classification result was compared and examined with the landcover classification using the old data. From the result of which was compared and examined the new landcover classification data recombinated calculation result with landcover classification using the original data, The classification accuracy of the new landcover classification data recombinated calculation result became low in ground but became improved in the all class. Specially The accuracy to urban area is very improved. therefore, it determined that reusing band ratio data is very useful when we need to analyze landcover classification and land information to urban area after that.
This research assessed the feasibility of using high-resolution aerial images and deep learning algorithms for estimating the land-use and land-cover areas at the Approach 3 level, as outlined by the Intergovernmental Panel on Climate Change. The results from different sampling densities of high-resolution (51 cm) aerial images were compared with the land-cover map, provided by the Ministry of Environment, and analyzed to estimate the accuracy of the land-use and land-cover areas. Transfer learning was applied to the VGG16 architecture for the deep learning model, and sampling densities of 4 × 4 km, 2 × 4 km, 2 × 2 km, 1 × 2 km, 1 × 1 km, 500 × 500 m, and 250 × 250 m were used for estimating and evaluating the areas. The overall accuracy and kappa coefficient of the deep learning model were 91.1% and 88.8%, respectively. The F-scores, except for the pasture category, were >90% for all categories, indicating superior accuracy of the model. Chi-square tests of the sampling densities showed no significant difference in the area ratios of the land-cover map provided by the Ministry of Environment among all sampling densities except for 4 × 4 km at a significance level of p = 0.1. As the sampling density increased, the standard error and relative efficiency decreased. The relative standard error decreased to ≤15% for all land-cover categories at 1 × 1 km sampling density. These results indicated that a sampling density more detailed than 1 x 1 km is appropriate for estimating land-cover area at the local level.
Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
/
2001.06a
/
pp.147-150
/
2001
최근 넓은 지역을 대상으로 토지이용 및 식생분포 등을 조사하기 위하여 인공위성 원격탐사기술이 활발히 사용되고 있다. 위성화상자료를 이용한 토지이용분석 사례는 다양한 분야에서 발견되는데, 미국지질청(USGS)의 EROS 데이터센터, 네브라스카 대학, 유럽공동체에서는 NASA의 도움을 받아 전 지구의 지표피복을 1km 해상도로 분류한 바 있다(http://edcdaac.usgs.gov).(중략)
With high temporal resolution, four times receiving during a day, MODIS images from Terra and Aqua satellites provide several advantages for monitoring spacious land. Especially, diverse MODIS products related to land, atmosphere, and ocean have been provided with radiance MODIS images. The products such as surface reflectance, NDVI, cloud mask, aerosol etc. are based on theoretical algorithms developed in academic areas. Comparing with other change detection studies mainly using the vegetation index, this study investigated temporal surface reflectance of landcovers for five years from 2004 to 2008. The near infrared (NIR) reflectance in urbanized and burned areas showed considerable difference before and after events. The specific characteristics of surface reflectance temporal profiles are possibly useful for the detection of landcover changes and classification.
Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.441-441
/
2012
본 연구의 목적은 북한지역에 적용할 수 있는 논벼 재배지역 추출 기법을 개발 및 적용하여 논 분포도를 작성하고, 정확도를 평가하는 것이다. 이를 위하여 북한에 적용 가능한 시계열 위성자료를 수집하고, 논벼 재배지역 추출을 위한 토지피복 분류 기법을 개발하여 북한의 논벼 재배지역 분포도를 작성하고자 한다. 최종적으로 작성된 논 분포도를 북한의 농경지 모니터링을 위한 기초 자료로 제공토록 한다. 본 연구에서는 시계열 NDVI를 적용한 객체기반 무감독 토지피복 분류 방법을 활용하여 북한의 황해남도 재령군을 대상으로 토지피복 분류와 논 지역을 추출을 수행하고자 하였다. 본 연구에서 활용한 영상은 RapieEye로서 5개의 위성이 지구를 관측하고 있기 때문에 매일 동일한 지역의 영상을 폭넓게 획득할 수 있다는 장점이 있으며, Red, Green, Blue, Near Infra Red 밴드 외에 Red Edge 밴드에서 데이터를 획득하여 산림 모니터링, 농작물 모니터링 등에 효과적으로 활용할 수 있다는 특징이 있다. 먼저 2010년 4월, 6월, 9월 영상으로 각 영상의 NDVI를 산정하고 이를 활용하여 객체를 생성하였다. 다음으로 생성된 객체를 바탕으로 무감독 토지피복 분류를 수행하였고, 논 적합지역에 대한 지형 정보를 분류결과에 반영하여 최종적인 토지피복지도 및 논 지역 지도를 구축하였다. 본 연구결과는 원격탐사분야의 응용 기술을 확장하고, 향후 북한지역의 농산물 생산량 파악과 농업수자원 평가 분야에서도 폭 넓게 활용될 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.