• Title/Summary/Keyword: 토양 pH와 EC

Search Result 394, Processing Time 0.031 seconds

Comparison of Seasonal Nutrient Variations and Productivity between Rice Fields Conventionally Managed and Recommended Fertilized in Large-Scale Environment-Friendly Agricultural Districts (광역친환경 벼 농업 단지 내 관행구와 추천시비구의 시기별 무기성분과 생산성 비교)

  • Lee, Ju-Ryeong;Choi, Hyun-Sug;Jung, Seok-Kyu
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.2
    • /
    • pp.173-191
    • /
    • 2019
  • The study was initiated to compare seasonal nutrient variations and rice (Oryza sativa L.) productivity in each of leading rice farm with conventionally managed and recommended fertilized of the large-scale environment-friendly agricultural districts in Jangheung, Suncheon, and Okcheon provinces in 2017. Suncheon rice experimental farm plots included a recommended fertilization plot that had been additionally sown hairy vetch in the fall of previous year, while Okcheon rice farm included a recommended fertilization plot applying half amount of the compost in the conventional plot. A Jangheung rice farm only practiced crop-livestock farming system. Soil pH and EC in all experimental plots were suitable levels for rice growth to cultivate. Seasonal soil pH from March to September was the highest for Suncheon rice farm, and seasonal soil EC was the highest for Jangheung rice farm. Seasonal soil T-N increased in all the plots from March to June in particular for Suncheon rice farm, and Jangheung rice farm had the lowest seasonal soil P. Seasonal soil K decreased in all the plots, with the lowest levels observed for Okcheon farm. Seasonal soil NH4+ mostly increased by up to 90 mg/kg in Jangheung rice farm from March to June. Seasonal plant T-N, P and K concentrations were the highest for Jangheung rice farm. Seasonal plant T-N and P concentrations decreased from June to September, but K leveles were fluctuated between 2.0% and 2.5%. Seasonal SPAD value was the lowest in Suncheon conventional plot. Jangheung rice farm plot produced 6,303 kg of rice per ha, which was approximately two times higher than those of Okcheon recommended plot. The seasonal T-N, P and K balance was the highest in Okcheon conventional plot, with the lowest values observed for Suncheon conventional plot. As a result, Suncheon recommended plot showed relatively low levels of seasonal macro-nutrient balance and the highest rice production, which could be the most environmentally friendly farm practiced conducted in this study.

Post Harvest Cropping Impacts on Soil Properties in Continuous Watermelon (Citrullus lanatus Thunb.) Cultivation Plots (시설수박 연작지 토양특성에 대한 후작물 재배의 영향)

  • Ahn, Byung-Koo;Kim, Dae-Hyang;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.98-107
    • /
    • 2007
  • Most of plastic film house plots in Korea have salinity problems caused by salt accumulations associated with continuous cropping including the heavy applications of chemical fertilizers, and high evapotranspiration. The objective of this study was to investigate soil properties and watermelon (Citrullus lanatus Thunb.) productivity in plastic film houses as influenced by the short-term crop rotation in the continuous watermelon-cultivated soils. The short-term rotational crops selected were corn, Chinese cabbage, radish, young radish, lettuce, spinach, and onion. Soil pH increased in most plots where a short-term crop was added to the crop rotation, except where radish was added. The content of soil organic matter significantly decreased in the lettuce-cultivated plot. The available phosphorus content in the soils increased with the cultivations of spinach and onion. Exchangeable Ca and Mg tended to increase in most of plots where a short-term rotational crop was grown, whereas the exchangeable K was clearly reduced by more than 50% in the same plots. Cultivation of rotational crops during the post-harvest season significantly decreased the electrical conductivity (EC) and the concentrations of soluble anions, such as chloride ($Cl^-$), nitrate ($NO_3{^-}$), and sulfate ($SO{_4}^{2-}$) in the soils. In particular, the EC decrease was related with the decrease in soil $K^+$ to $Ca^{2+}$ and $Mg^{2+}$ ratio. In all plots cultivated with the shot-term rotational crops, the ratios of bacteria to fungi (B/F) increased. However, the improvement in soil properties after adding a rotational crop did not result in a clear improvement in watermelon quantity or quality as measured by fruit weight and sugar content. Therefore, the addition of short-term rotational crops to a continuous watermelon cropping system would be beneficial to improve target soil properties in plastic film house plots studied.

Fertilizer Effect of Waste Nutrient Solution in Greenhouses for Young Radish Cultivation (열무 재배를 위한 시설하우스 폐양액의 비료 효과)

  • Hong, Youngsin;Moon, Jongpil;Park, Minjung;Son, Jinkwan;Yun, Sungwook
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.460-467
    • /
    • 2022
  • The purpose of this study is to enhance utilization of the waste nutrient solution (WNS) disposed at the hydroponic greenhouse. Several sets of testing were conducted to examine the effects of WNS: (a) a fertilizer effect, (b) soil column leaching, and (c) crop cultivation. The fertilizer effect test was applied in young radish cultivation by examining the growth characteristics of young radish and soil based on inorganic nitrogen according to the soil treatment of the nitrogen fertilizer (NF) and the WNS. The fertilizer effects and crop cultivation test were conducted with five treatments (A-E): A, non-treatment (water); B, 100% of NF; C, 70% of NF + 30% of WNS; D, 50% of NF + 50% of WNS; and E, 30% of NF + 70% of WNS. The soil column leaching test was conducted with three treatments: non-treatment (water), 100% of NF, 50% of WNS + 50% of NF. As a result, the chemical properties of the WNS were pH 6.0, EC 2.4dS·m-1, total phosphorus (T-P) 28mg·L-1, ammonium nitrogen (NH4-N) 5.0mg·L-1, and nitrate nitrogen (NO3-N) 301mg·L-1. The chemical properties of the soil were pH 5.51, EC 0.31dS/m, organic matter 2.08g·kg-1, NO3-N 9.64mg·kg-1, and NH4-N 3.20mg·kg-1. The results of fertilizer effects showed that the ratio of 50% or less of NF and 50% or more of WNS was high in young radish growth. There was no statistically significant difference between the soil chemistry in the C-E treatments where WNS was mixed with NF and the B treatment where only NF was applied. As a result of the soil column leaching test, there was no significant difference in the concentrations of NO3 and NH4 in the treatment of 100% of NF and 50% of NF + 50% of WNS. The study indicates, if the mixed fertilizer of WNS and NF is applied in the soil cultivation of young radish, it will reduce the use of NF and environmental pollution. This also helps reduce production costs on farmers and increase the yield of young radish.

Relationship Between Yield of Seedling and Soil Physico-Chemical Components of Ban-Yang-Jik Nursery in Ginseng Plantation (산지(産地) 반양직묘포(半養直苗圃)에서의 묘삼수량(苗蔘收量)과 토양이화학성간(土壤理化學性間)의 관계조사(關係調査))

  • Lee, Jong-Chul;Byen, Jeong-Su;Ahn, Dai-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.2
    • /
    • pp.177-181
    • /
    • 1988
  • To get the basic information about ginseng seedling production, yield of ginseng seedling and soil physico-chemical components of Ban-Yang-Jik (semimodified soil) nursery in 29 farmer's field were investigated. The number of available seedling per Kan (Kan means $180{\times}90cm$ area) is $362{\pm}226$. Root weight per seedling was negatively correlated with ammount of fine and extremely fine sand. Positive correlations were shown between pH and OM, K, Ca and Mg, and also between EC and Ca, Mg and ammonium and nitrate nitrogen in soil of nursery. There were significant linear relations between root weight and OM, K, Ca and Mg in soil of nursery. On the other hand, quadratic relation was held between the root weight and $P_2O_5$, but the root weight has no correlation with nitrogen. The nitrogen contents of soil might not influence on the growth of ginseng seedling as greatly as those of $P_2O_5$, K and Ca. The contents of $P_2O_5$, K and Ca in root were increased with increase of the contents of $P_2O_5$, K and Ca in soil of nusery, respectively. It showed the linear correlation between the root weight and $P_2O_5$ and Ca, otherwise quadratic correlation between the root weight and K in root.

  • PDF

Effect of Cu Species Distribution in Soil Pore Water on Prediction of Acute Cu Toxicity to Hordeum vulgare using Terrestrial Biotic Ligand Model (토양 공극수 내 Cu의 존재형태가 terrestrial biotic ligand model을 이용한 보리의 급성독성 예측에 미치는 영향)

  • An, Jinsung;Jeong, Buyun;Lee, Byungjun;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.30-39
    • /
    • 2017
  • In this study, the predictive toxicity of barley Hordeum vulgare was estimated using a modified terrestrial biotic ligand model (TBLM) to account for the toxic effects of $CuOH^+$ and $CuCO_3(aq)$ generated at pH 7 or higher, and this was compared to that from the original TBLM. At pH values higher than 7, the difference in $EA_{50}\{Cu^{2+}\}$ (half maximal effective activity of $Cu^{2+}$) between the two models increased with increasing pH. As Mg concentration increased from 8.24 to 148 mg/L in the pH range of 5.5 to 8.5, the difference in $EA_{50}\{Cu^{2+}\}$ increased, and it reached its maximum at pH 8. The difference in $EC_{50}[Cu]_T$ (half maximal effective concentration of Cu) between the two models increased as dissolved organic carbon (DOC) concentration increased when pH was above 7. Thus, for soils with alkaline pH, the toxic effect of $CuOH^+$ and $CuCO_3(aq)$ are greater at higher salt and DOC concentrations. The acceptable Cu concentration in soil porewater can be estimated by the modified TBLM through deterministic method at pH levels higher than 7, while combination of TBLM and species sensitivity distribution through the probabilistic method could be utilized at pH levels lower than 7.

Physicochemical Effects of Bottom Ash on the Turfgrass Growth Media of Sandy Topsoil in Golf Course (석탄바닥재 처리가 골프장 잔디식재 사질토양의 이화학성에 미치는 영향)

  • Lee, Ju-Young;Choi, Hee-Youl;Yang, Jae-E
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.2
    • /
    • pp.199-204
    • /
    • 2010
  • Much of the coal ash by thermal power plant has gradually been increased, however researches on the recycling of bottom ash has not been investigated enough so far. In this research, the lysimeter test was conducted to find out the possibilities of bottom ash as soil amendment to improve the physiochemical properties of sandy topsoil of turfgrass in golf course. The turfgrass growth test and leaching test were conducted on the lysimeter. The lysimeter columns were manufactured with various topsoil mixing ratios of 0, 10, 20, 30, and 50% of bottom ash with sand. As a result of leachate analysis through the lysimeter column, the higher ratios of bottom ash mixed affect significantly on water holding capacity of topsoil sand media with decreasing of the percolation rate. The results of leachate analysis in every three days interval, the pH of leachate increased with the bottom ash ratios, but the volume of $NO_3$-N, $NH_4$-N and K decreased significantly. However, the level of EC of leachate had constantly maintained. These results indicate that the application of bottom ash may improve turfgrass growth with water holding capability and fertility of sandy topsoil. However, the negative effects of the bottom ash also evaluated by reducing water permeability and solubility of $PO_4$-P by adsorption into soil particles. The results indicates that the reasonable mixing ratio of the bottom ash as soil amendment should be less than 20% (v/v) with sand which has a low water-holding and fertility in golf course topsoil layers.

Effect of Microbially Induced Calcite Precipitation on Plant Growth (미생물에 의해 생성된 탄산 칼슘 침전이 식물 생장에 미치는 영향)

  • Kim, Tae-Young ;Nawaz, Muhammad Naqeeb;Do, Jinung ;Chong, Song-Hun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.8
    • /
    • pp.41-48
    • /
    • 2023
  • Microbially induced calcite precipitation(MICP) is a novel cementation method meant to enhance soil engineering properties through the use of microorganisms. This study investigates the effect of different MICP concentrations on plant growth. Tall fescue seeds are grown in plant columns filled with Jumunjin sand. Following plant growth, the soil samples are treated with MICP via spraying method. The results indicate that the MICP-treated plants exhibit hampered growth compared with the untreated plants. pH and electrical conductivity(EC) tests are performed to analyze the changes in soil properties by MICP. The MICP-treated soils exhibit a pH = 7, similar to the untreated soil. However, the EC dramatically increases with the increase in the MICP concentration, which leads to an increase in the osmotic pressure of the soil surrounding the plant roots. Eventually, the higher osmotic pressure in MICP-treated soil hinders the absorption of water and nutrients in plant roots, thus inhibiting plant growth.

Effect of Shading and Nitrogen Level on the Accumulation of $NO_3\;^-$ in Leaf of Lettuce(Lactuca Sativa. L.) (차광 및 질소시비량이 상추내 질산염 함량에 미치는 영향)

  • Lee, Gyeong-Ja;Kang, Bo-Goo;Kim, Hyun-Ju;Min, Kyeong-Beom
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.4
    • /
    • pp.294-299
    • /
    • 2000
  • In order to find out the effects of shading and nitrogen fertilization on the accumulation of $NO_3\;^-$ in leaves of lettuce, lettuce plants were cultivated in the pots under glasshouse condition with different rates of shading(0, 50%) and nitrogen fertilization(100, 180, 200, 300, $400\;kg{\cdot}ha^{-1}$). The pH value was lower in soil after experiment than before experiment, whereas, contents of EC and $NO_3-N$ were higher. As the amounts of nitrogen fertilization were increased, pHs were decreased, but EC and the contents of $NO_3-N$ were increased. At the nitrogen fertilizations of 100, 180, 200, 300 and $400\;kg{\cdot}ha^{-1}$, the germination rates of lettuce were decreased to 84, 78, 76, 72 and 74%, and survival rates were also decreased to 94, 94, 90, 60 and 46%, respectively. However, the fresh weight of lettuce was highest at $45\;g{\cdot}plant^{-1}$ in the recommended fertilizer $plot(180\;kg{\cdot}ha^{-1})$ with non-shading condition. The contents of $NO_3\;^-$ in the leaves of lettuce were increased 2.8-4.1 times under 50% shading conditions than that under non-shading condition. It kept increasing up to seven order of growth phase; however, it started to decrease after eight order phase. Nitrate reductase activity of lettuce in non-shading condition was higher than that in 50% shading condition.

  • PDF

A Study on the Evalution after Urban Park Construction by Geographic Information System - Namsangol Park , Junggu , Seoul - (GIS를 활용한 도시공원 시공후 평가에 관한 연구 - 서울 중구 남산골공원을 중심으로 -)

  • 장동수;김남규
    • Spatial Information Research
    • /
    • v.4 no.1
    • /
    • pp.93-105
    • /
    • 1996
  • The purpose of this study was to give some ideas to the improving direction and evaluation in order to solve physical' ecological problems appeared after urban park construction. This study selected Namsangol park as a site, because this park was constructed to the goal in order to rehabilitate the original landform as a part of "Namsan original landscape rehabilitation work". So this study was executed to investigate past and present landform change, soil condition, planting, water/climate etc., and then these were analyzed by GIS.- soil :pH, Ec, organic matter, the ability of moisture content, bulk density, porosity, etc.- planting:planting density, plant species- water/climate: the amount of rainfall, drainage and drainage-basin. And then this study overlayed soil+cut/fill, soil+pine tree, cut/fill + planting density, and cut/fill + plant species.t species.

  • PDF

Colonization Characteristics and Density of Arbuscular Mycorrhizal Fungi(AMF) in the Different Cultivated Grape Soils (재배방식이 상이한 포도 재배지 토양의 Arbuscular균근균 포자밀도와 감염특성)

  • Sohn, Bo-Kyoon;Cho, Ju-Sik;Liu, YanPeng;Lee, Do-Jin;Kim, Hong-Lim
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.6
    • /
    • pp.476-481
    • /
    • 2007
  • There was no difference between eco-friendly and conventional cultivated soils in the chemical properties. But $Av.P_2O_5$ contents in the eco-friendly cultivated soils were slightly higher than that of conventional cultivated soils. In the conventional cultivated soils, the coefficient of correlation between spore density and soil chemical properties such as pH, EC, OM, $Av.P_2O_5$, K${\surd}$(Ca+Mg) and CEC was $-0.48^*$, -0.05, $0.48^*$, -0.12, -0.13, 0.31 respectively. But, in the eco-friendly cultivated soils was $-0.68^*$, $0.69^*$, $0.96^{**}$, $0.75^*$, $0.63^*$, $0.92^{**}$ respectively. The spore density was 140 spores $30g^{-1}$ in the eco-friendly cultivated soils and 60 spores $30g^{-1}$ in the conventional cultivated soils. Infection ratio of intercellular hypha was higher than that of arbuscular and vesicular among the fungi structures within the root. Suncheon and Cheonan as eco-friendly cultivated soil were higher than GimJe and NamWon in infection ratio.