• Title/Summary/Keyword: 토양 함수량

Search Result 249, Processing Time 0.032 seconds

Study on Potential Water Resources of Andong-Imha Dam by Diversion Tunnel (안동-임하 연결도수로 설치에 따른 가용 수자원량에 관한 연구)

  • Choo, Yeon Moon;Jee, Hong Kee;Kwon, Ki Dae;Kim, Chul Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1126-1139
    • /
    • 2014
  • World is experiencing abnormal weather caused by urbanization and industrialization increasing greenhouse gas and one of these phenomenon domestically happening is flood and drought. The increase of green-house gases is due to urbanization and industrialization acceleration which are causing abnormal climate changes such as the El Nino and a La Nina phenomenon. It is expected that there will be many difficulties in water management, especially considering the topography and seasonal circumstances in Korea. Unlike in the past, a variety of water conservation initiatives have been undertaken like the river-management flow and water capacity expansion projects. To meet the increasing demand for water resources, new environmentally-friendly small and medium-sized dams have been built. Therefore, the development of a new paradigm for water resources management is essential. This study shows that additional security is needed for potential water resources through diversion tunnels and is very important to consider for future water supplies and situations. Using RCP 6.0 and RCP 8.5 in representative concentration pathway climate change scenario, specific hydrologic data of study basin was produced to analyze past observed basin rainfall tendency which showed both scenario 5%~9% range increase in rainfall. Through sensitivity analysis using objective function, population in highest goodness was 1000 and cross rate was 80%. In conclusion, it is expected that the results from this study will help to make long-term and stable water supply plans by using the potential water resource evaluation model which was applied in this study.

Composting Methods for Pig Sludge and the Stabilized Investigation of Crop Cultivation (돈분의 자원화 퇴비 제조 방법 및 작물 재배 안전성 검정)

  • Oh, Tae-Seok;Kim, Chang-Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.29 no.1
    • /
    • pp.51-62
    • /
    • 2009
  • This study was carried out development a new composting system to lower copper and zinc concentration in plg sludge compost and conduct an inquiry into the possibility of crop cultivation. The concentrations of nitrogen, phosphorus and pH averaged 4.4%, 6.3% and 7.57, respectively, which were higher concentrations than in commercial organic fertilizers, and the concentrations of copper and zinc averaged 805 and 1,704 mg/kg, respectively, which were beyond the heavy metal concentration limit in byproduct compost. Hydrated citric acid I lowered the concentrations of copper and zinc by 58% and 97%, respectively and hydrated oxalic acid II lowered the concentrations of copper and zinc by 48% and 56%, respectively in pig sludge compost. Lower concentrations of copper and zinc in pig sludge resulted from the enhanced hydrated-citric acid concentration in organic acid solution mixed with distilled water. The concentrations of copper and zinc were 330, and 41 mg/kg in the pig sludge treated with 100% hydrated citric acid. Agitation composting system stabilized the compost earlier than the stationary composting system, in which the stabilization condition was confirmed by higher temperature by $4^{\circ}C$ at highest temperature and 7 days earlier cooling down after highest temperature. The levels of germination index (G.I) 80 were obtained 15 and 20 days after composting in agitation and stationary composting system, respectively. The concentrations of copper and zinc were 2.4 and 4.26 mg/kg respectively in soils amended with pig sludge compost after removing process of heavy metals by citric acid, but 8.0 and 22.37 mg/kg, respectively in soils amended with Pig Sludge. The concentrations of heavy metals was highest in com cultivated in soils amended with pig sludge. The copper and zinc concentrations In corn leaves were 75.2 and 50.56 mg/kg respectively, which were 4 and 2 fold higher than the com cultivated in soils amended with pig sludge compost after heavy metal removing process by hydrated citric acid.

Effects of Nitrogen and Phosphorus Fertilization on Soil Nitrogen Mineralization of Pinus rigida and Larix kaempferi Plantations in Yangpyeong area, Gyeonggi Province (질소(窒素)와 인(燐) 시비(施肥)가 경기도(京畿道) 양평지역(楊平地域) 리기다소나무와 낙엽송(落葉松) 조림지(造林地) 토양(土壤) 내(內) 질소무기화(窒素無機化)에 미치는 영향(影響))

  • Lee, Im-Kyun;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.1
    • /
    • pp.82-90
    • /
    • 2006
  • To examine the effects of nitrogen and phosphorus fertilization on soil nitrogen (N) mineralization, we monitored rates of soil nitrogen mineralization and nitrification in 41-year-old pitch pine (Pinus rigida Mill.) and Japanese larch (Larix kaempferi Gordon) stands growing on similar soil condition in central Korea. For this study, we used the buried-bag incubation method. Fertilizers were applied at three levels [control (C), 200 N kg/ha+25 P kg/ha (LNP), and 400 N kg/ha+50 P kg/ha(HNP)] on 5 June, 1996. Mineral soils (0~20 cm) were incubated 6 times with 45-day-interval from 5 June 1996 to 4 June 1997. Initial soil moisture contents were significantly different among sampling dates and between tree species. Initial soil moisture contents were 32% for C, 28% for LNP, and 26% for HNP at the P. rigida stand, and 31% for C, 31% for LNP, and 33% for HNP at the L. kaempferi stand, respectively. Mean daily N mineralization rates were significantly different among sampling dates and treatments. Annual net N mineralization and nitrification were also significantly different between the two tree species. The annual net N mineralization was 10.6 kg/ha/year for C, 23.3 kg/ha/year for LNP and 6.6 kg/ha/year for HNP at the P. rigida stand, and 2.0 kg/ha/year for C, 12.1 kg/ha/year for LNP and 16.7 kg/ha/year for HNP at the L. kaempferi stand. The annual nitrification was 2.8 kg/ha/year for C, 7.6 kg/ha/year for LNP and 4.3 kg/ha/year for HNP at the P. rigida stand, and 4.3 kg/ha/year for C, 14.8 kg/ha/year for LNP and 6.6 kg/ha/year for HNP at the L. kaempferi stand. The ratios of annual net nitrification to annual net N mineralization were 26% for C, 33% for LNP, 65% for HNP at the P. rigida stand, and 100% for C, 100% for LNP, 40% for HNP at the L. kaempferi stand, respectively. This study indicates that N mineralization in forest may be different by the predominant tree species and fertilization even under similar environments. It is likely that the quality of organic matter might control nitrogen mineralization and nitrification in soils.

Ammonia Volatilization from Coated Urea in Paddy Soil of Transplanting Rice Culture (벼 이앙재배에서 피복요소 시용에 따른 암모니아 휘산)

  • Lee, Dong-Wook;Park, Ki-Do;Park, Chang-Young;Kang, Ui-Gum;Son, Il-Soo;Yun, Eul-Soo;Park, Sung-Tae;Lee, Suk-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.6
    • /
    • pp.321-327
    • /
    • 2005
  • Ammonia ($NH_3$) volatilization was measured from latex coated urea (LCU) and normal urea treated rice paddy under transplanting rice culture in Milyang in 2002 and 2003. The $NH_3$ volatilization from incubation experiment was significantly related with ammonium-N ($NH_4-N$) concentration and pH in the surface water. The correlation coefficients of $NH_3$ volatilization compared to the $NH_4-N$ and pH in surface water were significantly higher in urea than LCU. The $NH_3$ volatilization from both urea and LCU treatments was not increased in surface water of pH less than 8.0, while $NH_3$ volatilization increased significantly in the surface water of pH over 8.0. The results in the field experiment indicated that $NH_3$ volatilization after top-dressing of urea increased rapidly with increasing $NH_4-N$ concentration in soil and floodwater, and highest from 7 to 10 days after top-dressing. The amount of $NH_3$ volatilized from urea treatment was in the range of $4.9-8.4kg\;N\;ha^{-1}$. The variations of $NH_3$ volatilization in 2002 and 2003 were caused by changed N dynamics due to the different weather conditions such as rainfall and temperature. The amount of $NH_3$ volatilized from LCU treatment was significantly reduced compared to that of urea. The reason for the reduced $NH_3$ volatilization in LCU treatment would be due to the lower concentration of $NH_4-N$ in floodwater. The amount of $NH_3$ volatilized from LCU treated rice paddy was in the range of $1.2-1.8kg\;N\;ha^{-1}$, and the loss of N by ammonia volatilization was 2.0-2.3%. Loss of N by $NH_3$ volatilization with LCU treatment was reduced by 75-79% comparing to urea treatment.

Geochemical Characteristics of Groundwater in Korea with Different Aquifer Geology and Temperature -Comparative Study with Granitic Groundwater (대수층 지질 및 온도에 따른 국내 지하수의 지구화학적 특징 -화강암질암내 지하수와의 비교연구)

  • 이종운;전효택;전용원
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.4
    • /
    • pp.212-222
    • /
    • 1997
  • Geochemistry of metasedimentary groundwaters and spar waters has been studied in comparison with that of granitic groundwaters in Korea. Metasedimentary groundwaters show $Ca^{2+]$-${HCO_3}^-$ type at depth and low sodium concentrations compared with granitic groundwaters, which is due to the lack of plagioclase in their aquifer mineralogy and, therefore, the predominant reaction of calcite dissolution. According to factor analysis, metasedimentary groundwaters at 100~300 m depth are represented by 1) the dissolution of calcite and Mg-carbonates, 2) transformation of kaolinite to illite, and 3) the presence of sodium as not the product of plagioclase dissolution but a artificial pollutant. Discriminant function between the granitic and metasedimentary groundwaters shows a good discriminating ability with 81.8%, and groundwaters of volcanic aquifer, which has abundant plagioclase, are included in the granitic group by this function. Spa water samples show the result of active water-rock interaction due to high temperature.

  • PDF

A Study on Tractive Resistance Prediction of Logging machine (집재기계의 견인저항예측에 관한 연구)

  • Oh, Jae Heun;Cha, Du Song
    • Journal of Forest and Environmental Science
    • /
    • v.17 no.1
    • /
    • pp.62-73
    • /
    • 2001
  • This study was conducted to predict the tractive resistance for tree length logs being skidded by ground based logging machine. The mathematical models for predicting the tractive resistance of tree length log have been developed. The tractive resistance is expressed as a function of log weight, skidding coefficient, and ground gradient. The skidding coefficients for four species of Korean pine, Japanese larch, mongolian oak, and cork oak were determined under laboratory condition using universal testing machine and small soil bin, Three different tractive resistance models were applied to four species and compared with each other. The ratios (T/Wt) of skidding-line tensions to the skidding log weight increased linearly with increment in ground gradient. Semi-ground skidding generally required smaller tensions than ground skidding under given condition. Results of this study can be utilized as basic information for logging machine selection and power requirement of skidding winch.

  • PDF

Determination of the Fracture Hydraulic Parameters for Three Dimensional Discrete Fracture Network Modeling (3차원 단열망모델링을 위한 단열수리인자 도출)

  • 김경수;김천수;배대석;김원영;최영섭;김중렬
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.2
    • /
    • pp.80-87
    • /
    • 1998
  • Since groundwater flow paths have one of the major roles to transport the radioactive nuclides from the radioactive waste repository to the biosphere, the discrete fracture network model is used for the rock block scale flow instead of the porous continuum model. This study aims to construct a three dimensional discrete fracture network to interpret the groundwater flow system in the study site. The modeling work includes the determination of the probabilistic distribution function from the fracture geometric and hydraulic parameters, three dimensional fracture modeling and model calibration. The results of the constant pressure tests performed in a fixed interval length at boreholes indicate that the flow dimension around boreholes shows mainly radial to spherical flow pattern. The fracture transmissivity value calculated by Cubic law is 6.12${\times}$10$\^$-7/ ㎡/sec with lognormal distribution. The conductive fracture intensity estimated by FracMan code is 1.73. Based on this intensity, the total number of conductive fractures are obtained as 3,080 in the rock block of 100 m${\times}$100 m${\times}$100 m.

  • PDF

Development of 3-D Flow Model for Porous Media with Scenario-based Ground Excavation (지반굴착 시나리오 기반의 다공성 매질에 대한 3차원 유동해석모델 구축)

  • Cha, Jang-Hwan;Lee, Jae-Young;Kim, Woo-Seok
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.19-27
    • /
    • 2017
  • In recent years, ground subsidence has been frequently occurred by underground cavities due to the excessive groundwater inflow, caused by poor construction and management, during tunnel excavation and underground structure construction. In this study, a numerical model (SEEFLOW3D) was developed to estimate groundwater fluctuations for saturated-unsaturated poros media, evaluates the impact on ground excavation with open cut and non-open cut scenarios. In addition, the visual MODFLOW was applied to demonstrate the verification of the model compared with both results. Our results indicated that the RMSE and NRMSE was obtained to range over -3.95~5.7% and 0.56~4.62%, respectively. The developed model was expected to estimate groundwater discharges and apply analysis tool for optimum design of waterproof wall in future.

Evaluation of the impact on Yongdam watershed hydrologic cycle by physical changes obtained from forest growth information (용담댐유역 산림의 물리적 성장변화가 수문순환에 미치는 영향 평가)

  • Han, Daeyoung;Kim, Wonjin;Lee, Jiwan;Kim, Sehoon;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.369-369
    • /
    • 2022
  • 기후변화에 관한 정부간 합의체 (IPCC, Intergovernmental Panel on Climate Change) 6차 보고서에서 이번 세기 중반까지 현 수준의 온실가스 배출량을 유지한다면 2021~2040년 중 1.5℃를 초과할 것이다. 이러한 기후의 변화로 인한 기온상승 영향으로 과거와는 달리 산림변화는 과거와 다르게 침엽수는 감소하고 활엽수는 증가하는 추세다. 본 연구에서는 유역 대부분이 산림으로 금강 상류의 용담댐유역 (930.2 km2)을 대상으로 SWAT (Soil and Water Assessment Tool)을 이용하여 장기간 산림변화에 따른 수문 구성요소를 평가하였다. MOD15A2 LAI 및 임상도 자료를 10년 단위 (1980s (1980~1989), 2000s (2000~2009), 2010s (2010~2019))를 이용해 임상별 (침엽수림, 활엽수림, 혼효림) 및 산림 높이를 구축하였다. 임상별 산정된 LAI를 기초로 SWAT의 임상별 LAI 및 수문 검·보정을 통해 용담댐유역 현황을 재현하였다. 모형의 적용성 평가는 R2를 이용하였으며, 임상별 (침엽수, 활엽수, 혼효림) LAI는 0.95, 0.89, 0.90로 증발산량은 0.51, 토양수분은 0.5~0.55로 유량의 경우 0.69로 산정되었다. 산림변화에 따른 1980s는 LAI 자료가 없기에 2000s 및 2010s의 식생 높이 및 LAI를 멱함수로 회귀하여 1980s 엽면적지수를 산정하였다. 기상자료는 2010s로 고정하고 산림 성장이 물순환에 미치는 영향을 1980s 및 2010s의 수문 비교를 시공간적으로 평가할 예정이다.

  • PDF

Change of the Vegetation Due to Soyanggang Dam Construction (소양강댐 건설에 따른 주변 식생의 변화)

  • Choi, Ho;Park, Pil-Sun;Kim, Jae-Geun;Suh, Sim-Eun
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.1-13
    • /
    • 2010
  • Most of investigations about the effects of dam construction on the surrounding environments have focused mainly on the change of climate conditions and crop production. In order to research the effect of dam construction on the surrounding vegetation, we chose the Soyanggang dam whose storage capacity is the largest in Korea, and was built 33 years ago. We surveyed and analyzed the surrounding vegetation by using quadrat method and measured the soil moisture content among floodplain (FP), 5m above the flood plain (AFP) and control group (CG) which is 3km far from the lake through ridge. The largest value of mean importance percentage of the canopy~understory layer at FP was Salix koreensis (87.9%) and those of AFP and CG was Quercus mongolica (38.9% and 40.4% respectively) and the largest important percentage of the herb layer at FP was Artemisia capillaris (34.2%) and those of AFP and CG was Oplismenus undulatifolius var. undulatifolius (9.4% and 24.6% respectively). The Shannon-Wiener diversity index of shrub~canopy layer at FP (0.26) was lower than AFP (2.34) and CG (2.23) and there was not any significant difference in the herb layer among three groups. The S${\o}$rensen similarity index between FP and AFP, FP and CG was 0, and that of AFP and CG was relatively high. The highest density of tree and subtree with the DBH level of FP was S. koreensis of 5~10cm (240/ha), and that of AFP and CG was Quercus spp. of 15~20cm (400/ha and 466/ha respectively). And the highest density of seedlings of FP was Pinus densiflora (7,040/ha), and that of AFP and CG was Quercus spp. (720/ha and 400/ha respectively). The soil water content of FP (6.28%) was relatively lower than AFP and CG (11.13% and 10.14% respectively; p<.01). These results indicated that construction of Soyanggang dam changed the vegetation of the floodplain, without showing a change in its upland areas.