• Title/Summary/Keyword: 토양 수분 포텐셜

Search Result 46, Processing Time 0.028 seconds

Ecological Importance of Water Budget and Synergistic Effects of Water Stress of Plants due to Air Pollution and Soil Acidification in Korea (한국에서 수분수지의 생태적 중요성과 대기오염 및 토양 산성화로 인한 식물의 수분스트레스 증대 효과)

  • 이창석;이안나
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.143-150
    • /
    • 2003
  • Korea has plentiful precipitation but rainfall events concentrate on several months of rainy season in her weather condition. Korea, therefore, experiences drought for a given period every year. Moreover the soil has usually low water holding capacity, as it is composed coarse particles originated from the granite. Response of several oaks and the Korean red pine (Pinus densiflora) on water stress showed that water budget was significant factor determining vegetation distribution. In addition, dehydration level due to cold resistance mechanism of several evergreen plants during the winter season was closely related to their distribution in natural condition. Experimental result under water stress showed that the Korean red pine was very tolerant to desiccation but the seedlings showed high mortality during the dry season. The mortality tended to proportionate to soil moisture content of each site. A comparison between soil moisture content during June when it is severe dry season and moisture content of the culture soil when the pine seedlings reached the permanent wilting point due to water withheld proved that high mortality during the dry season was due to water deficit. Water potential of sample plants measured during the exposure experiment to the air pollutant showed a probability that water related factors would dominate the occurrence of visible damage and the tolerance level of sample plants. In both field survey and laboratory experiment, plants exposed to air pollution showed more rapid transpiration than those grown in the unpolluted condition. The result would due to injury of leaf surface by air pollutants. Aluminum (Al/sup 3+/) increased in the acid soil not only inhibits root growth but also leads to abnormal distribution of root system and thereby caused water stress. The water stresses due to air pollution and soil acidification showed a possibility that they play dominating roles in inducing forest decline additionally to the existing water deficit due to weather and soil conditions in Korea. Sludge, which can contribute to improve field capacity, as it is almost composed of organic matter, showed an effect ameliorating the retarded growth of plant in the acidified soil. The effect was not less than that of dolomite known in widely as such a soil ameliorator. Litter extract contributed also to mitigate the water stress due to toxic Al/sup 3+/. We prepared a model showing the potential interaction of multiple stresses, which can cause forest decline in Korea by synthesizing those results. Furthermore, we suggested restoration plans, which can mitigate such forest decline in terms of soil amelioration and vegetation restoration.

Some Factors Affecting Germination and Growth of Echinochloa colona (Echinochloa colona의 발아(發芽) 및 생장(生長)에 미치는 제요인(諸要因))

  • Chun, J.C.;Moody, K.
    • Korean Journal of Weed Science
    • /
    • v.5 no.2
    • /
    • pp.103-108
    • /
    • 1985
  • A series of experiments were conducted to determine the effect of pH, salinity, seeding depth, and moisture stress on the germination and growth of Echinochloa colons (L.) Link. Germination significantly decreased at pH 10, but shoot lengths were not affected by the pH tested. Germination was not affected by salt concentrations of up to 0.1%, but was significantly reduced at 0.5%. A 1.0% salt concentration did not significantly reduce shoot length. Increase in seeding depth significantly reduced emergence. Irrespective of seeding depth, the coleoptilar node was always just below the soil surface. Delayed and decreased germination was obtained at -4.6 bars of simulated water potential, while no germination occurred at -9.8 bars. Soil moisture stress significantly reduced plant height, delayed panicle initiation, and reduced seed production.

  • PDF

Effects of Compressed Expansion Rice Hull Application and Drip Irrigation on the Alleviation of Salt Accumulation in the Plastic Film House Soil (팽화왕겨 처리와 점적관개에 의한 염류집적 시설재배지 염류경감 효과)

  • Cho, Kwang-Rae;Kang, Chang-Sung;Won, Tae-Jin;Park, Kyeong-Yeol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.372-379
    • /
    • 2006
  • This study was carried out to improve chemical properties of salt-accumulated plastic film house soil. Compressed expansion rice hull was applied at 0, 2.5, 5.0, $7.5Mg\;ha^{-1}$, and drip irrigation was initiated at -33 kilopascals (kPa) of soil water potential and ceased adjusted up to -10 kPa. Another treatment was the application of inflated rice hull at $5.0Mg\;ha^{-1}$ with drip irrigation starting at soil water potential -20 kPa and adjusted to -10 kPa. Lettuce(Lactuca sativa L.) was cultivated at sandy loam soil with $5.1dS\;m^{-1}$ of electrical conductivity (EC). $EC_w$(1:5) of plots treated with $5.0Mg\;ha^{-1}$ of inflated rice hull and irrigated at the point of -20 kPa and -33 kPa of soil water potential was reduced by 26% and 24% less than untreated control plot, respectively. Soil $EC_w$(1:5) has close relationship with $Cl^-$ as well as $NO_3{^-}-N$ and $SO{_4}^{2-}$ in the soil. Total nitrogen in leaf of lettuce was deficient in the earlier growth stage. The yield of lettuce increased by 6% by the application of inflated rice hull of $5.0Mg\;ha^{-1}$ with drip irrigation starting at -33 kPa of soil water potential. It decreased 4% when the drip irrigation was stated at -20 kPa of soil water potential. The amount of water used for irrigation was reduced with the increasing application of inflated rice hull. The watering initiated at the point of -33 kPa was more economical compared with starting at -20 kPa.

Kiwifruit Quality of 'Jecy Gold' as Affected by Soil Types in Jeju Island (제주 토양유형이 '제시골드' 키위 과실의 품질에 미치는 영향)

  • Moon, Doo-Gyung;Kim, Chen-Hwan;Kim, Seong-Cheol;Son, Daniel;Joa, Jae-Ho;Seong, Ki-Cheol;Jung, Hee-Chan;Lim, Han-Cheol;Lee, Young-Jae
    • Journal of agriculture & life science
    • /
    • v.46 no.6
    • /
    • pp.17-24
    • /
    • 2012
  • Soil types for cultivated crops are approximately compose of volcanic ash soils for black(21%) and dark brown soils(41%), and non-volcanic ash soil of red-yellow soil(17%) in Jeju Island. The effects of these soils on fruit qualities of kiwifruit 'Jecy Gold'(Actinidia chinensis cv. Jecy Gold) were investigated in non-heating plastic house. Soil moisture potential was the lowest in the red-yellow soil during fruit growth. However, transverse diameter of fruit in the red-yellow soil was tends to be smaller than in volcanic ash soils, but longitudinal length of fruit was not shown difference by soil types during fruit maturation. Soluble solids in fruit was not differed by soil types until 140 days after of anthesis, after that the red-yellow soil was the highest. No difference on acid contents and hardness of fruit by soil types. Fructose, glucose and sucrose contents in harvested fruit were $4.45{\pm}2.08$, $5.43{\pm}1.13$, and $2.40{\pm}0.40%$ for the red-yellow soil, $2.51{\pm}0.55$, $3.52{\pm}0.86$, and $0.79{\pm}0.33%$ for the black soil and $2.54{\pm}0.47$, $3.52{\pm}0.73$, and $0.73{\pm}0.38%$ for the dark brown soil, respectively. These results show that soluble solid and free sugars in fruit were affected by soil types. It is estimated that soil moisture was rapidly drought in the red-yellow soil of non-volcanic ash soil than in the black and dark brown soils of volcanic ash soil.

Relationship between Drought-Tolerance and Physiological Parameters in Korean Barley Genotypes (보리 품종의 한발저항성과 생리적 지표와의 상관)

  • 이변우;부금동;백남천;김정곤
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.516-526
    • /
    • 2003
  • Thirty-six barley varieties including Korean modern and local varieties were tested for drought-tolerance in the field of plastic rain shelter, Drought treatment was initiated at initial tillering stage (March 27, 2002) by withholding irrigation and lasted until harvest. Soil water potential maintained at around -0.05㎫ in the control plot and varied from -0.05㎫ (at the initial stage of drought treatment) to -0.29㎫ in the drought treatment plot. At forty days after drought treatment, relative water content (RWC), osmotic potential (OP), osmotic adjustment (OA), and $^{13}\textrm{C}$ discrimination ($\Delta$) were measured and then plants were sampled for leaf area index (LAI) and dry weight (DW). Barley was harvested at maturity for determining DW, grain yield, 1000 grains weight and number of spikelet. The tested varieties revealed wide spectrum of drought tolerance. Dongbori-1, Chalbori, Changyeongjaerae, Samdobori and Weolseong 87-31 showed strong drought-tolerance while Songhagbori and Suwonmaeg360 showed weak drought-tolerance. The drought injury indexes (drought/control ratio) of DW and yield revealed significant positive correlation with leaf RWC in drought treatment plot and $\Delta$ in the control plot, but obvious negative correlation with leaf OP and OA under drought condition. In addition, all the drought indexes of OP, $\Delta$ and RWC showed obvious positive correlation with the drought injury indexes of DW, 1000 grain weight and yield. Thus, OP and RWC under drought condition and $\Delta$ under well-watered condition would be used as the evaluation criteria for drought- tolerance of barley genotypes. However, further investigation is needed for the relationship between $\Delta$ and drought-tolerance as the other reports were not consistent with our result.

Effects of Heavy Rain during Rainy Season and Drainage Methods on Soil Water Content, Photosynthesis Characteristics, and Growth in 'Jinok' and 'Campbell Early' Grapes (장마기 집중호우와 배수방법이 토양수분 및 포도 '진옥'과 '캠벨얼리'의 광합성 특성과 생육에 미치는 영향)

  • Choi, Young Min;Jung, Sung Min;Choi, Dong Geun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Recently, it is increasing the grape farm which is converted from paddy field to orchard. These soil which are poor drainage extremely also can be damaged a lot by excessive water or flooding during heavy rain season on summer. Therefore the aim of this study was carried out to measure the changes of soil water potential and to compare the growth responses of 'Jinok' (Vitis spp.) and 'Campbell Early' (V. labruscana) grapes under three drainage systems (control, conventional drainage, and under drainage). After heavy rain, soil water potential holding times above -15 kpa applied water excessive were 352, 348 and 180 hours in control, conventional, and under drainage systems, respectively. The clay content of the under drainage system was lower than the other systems about 8-12%. The crop water stress index was lowest in the under drainage and highest in the control. Also, photosynthetic rate has showed the opposite result with crop water stress index. It was significant differences between the treatments but, the value has not shown significantly different between the varieties. In addition, leaf area and the trunk growth rate was more effective in under drainage than in the control and conventional drainage.

Comparison of Disk Tension Infiltrometer and van Genuchten-Mualem Model on Estimation of Unsaturated Hydraulic Conductivity (장력 침투계(Disk Tension Infiltrometer)와 van Genuchten-Mualem 모형 적용에 따른 불포화수리 전도도의 비교 해석)

  • Hur, Seung-Oh;Jung, Kang-Ho;Park, Chan-Won;Ha, Sang-Keun;Kim, Geong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.259-267
    • /
    • 2006
  • Hydraulic conductivity is the rate of water flux on hydraulic gradient. The van Genuchten Mualem (VGM) model is frequently used for describing unsaturated state of soils, that is composed with the function of soil water potential and soil water content and requests various parameters. This study is to get the value of VGM parameters used Rosetta computer program based on neural network analysis method and to calculate VGM parameters. VGM parameters included Ko(effective saturated hydraulic conductivity), ${\theta}r$(residual soil water content), ${\theta}s$(saturated soil water content), L, n and m. The unsaturated hydraulic conductivity at 10 kPa was calculated by using Rosetta program. Unsaturated hydraulic conductivities of 17 soil series at 1, 3, 5, 7 kPa were also obtained by applying saturated hydraulic conductivity by disk tension infiltrometer based on Gardner and Wooding's equation. Water flow at the water potential of 3 kPa was very low except Namgye, Hagog, Baegsan, Sangju, Seogcheon, Yesan soil series. Unsaturated hydraulic conductivity at 1 kPa showed the highest value for Samgag soil series and was in order of Yesan, Hwabong, Hagog and Baegsan soil series. Those of Gacheon, Seocheon and Ugog soil series were very low. When the value by VGM was compared with the value by disc tension infiltrometer, there was a tendency with exponential function to soils without gravel but there was no tendency to soils including gravel. Conclusively, it would be limited that VGM model for unsaturated hydraulic conductivity analysis applies to Korean agricultural land including gravel and having steep slope, shallow soil depth.

Mycorrhizal colonization effects on C metabolism in relation to drought-tolerance of perennial ryegrass (페레니얼 라이그라스에서 Mycorrhiza 접종이 탄수화물대사와 가뭄스트레스 저항성에 미치는 영향)

  • Lee, Bok-Rye;Jung, Woo-Jin;Kim, Dae-Hyun;Kim, Kil-Yong;Shon, Bo-Kyoon;Kim, Tae-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.4
    • /
    • pp.232-242
    • /
    • 2002
  • To investigate the effects of arbuscular mycorrhizal (AM) fungus (Glomus intraradices) colonization on drought-stress tolerance, leaf water potential, chlorophyll concentration, P content and carbohydrate composition were examined in perennial ryegrass (Lolium perenne L.) plants exposed to drought-stressed or well-watered conditions. Drought stress significantly decreased leaf water potential, P content and leaf growth. These drought-induced damages were moderated by mycorrhizal colonization. Drought stress decreased the concentration of soluble sugars in shoots. AM plants had a higher foliar soluble sugar than non-AM plants under drought stress condition. Drought stress depressed the accumulation of starch and fructan in shoots, but stimulated in roots. Under drought-stressed condition, starch concentration in roots was higher in non-AM plants than in AM plants. Fructan was the largest pool of carbohydrates, showing the highest initial concentration and the highest net increase for 28 days of treatment. Drought stress slightly decreased fructan concentration in shoots, but remarkably increased in roots. Under drought-stressed condition, fructan concentrations in non-AM and AM shoots at day 28 were 18.7% and 13.3% lower than the corresponding values measured at well-watered plants. However, in the roots, fructan accumulation caused by drought was lessen 13.6% by mycorrhizal colonization. The results obtained suggest that mycorrhizal colonization improves drought tolerance of the host plants by maintaining higher leaf water status and P status, and by retaining more foliar soluble sugars.