• Title/Summary/Keyword: 토양의 화학적 특성

Search Result 961, Processing Time 0.03 seconds

Studies on the Soil Microoganisms and Physiochemical Properties in Kwangju area (광주지역의 토양미생물과 물리화학적 특성에 관한 연구)

  • 김상문
    • Korean Journal of Plant Resources
    • /
    • v.4 no.2
    • /
    • pp.51-58
    • /
    • 1991
  • With the soil samples collected from 33 locations in Kwangju area, the physiochemical properties of soil and soil microorganisms have been studied and the results of'the analysis were as follows ;1 . Tlle temperatilre, pH, moisture and organic matter of sampling s'tes were measured in the range of 21.O~28.O$^{\circ}C$, 4.0"6.6, 2.1"24.0% and 2.8~22.0% respectively.and that showed wide range distribution in moisture and organio mattrr particulary.and averase was 24.$^{\circ}C$ of temperature, 4.9 of pH, 11.9% of moisture and 8.9% of'organic matter.2. The general bacterial number, cellulolytic bacterial number, general fungal number and cellulolytic fungal number were measured in tile range of 23$\times$10$^{[-995]}$ _1548x10$^{[-995]}$ , 8.0$\times$10$^{[-995]}$ ~412.0$\times$10$^{[-995]}$ , 0.3$\times$10$^{[-994]}$ ~56.4$\times$10$^{[-994]}$ and 0.Ix10$^{[-994]}$ ~17.2x10$^{[-994]}$ , respectivelyand average was 378.4$\times$10$^{[-995]}$ of general bacteria, 102.5$\times$10$^{[-995]}$ of cellulolytic bacteria.13.OX10$^{[-994]}$ of general fungi and 4.3$\times$10$^{[-994]}$ of cellulolytic fungi.tic fungi.

  • PDF

Geochemical Characteristics of Soils, Sediments and Waters in stream Of Hwasun area (화순지역 토양-퇴적물-하천수의 지구화학적 특성)

  • Oh, Kang-Ho;Koh, Yeong-Koo;Youn, Seok-Tai
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.1
    • /
    • pp.9-22
    • /
    • 2003
  • To consider environmental characteristics in the scope of geochemistry of streams, Hwasun area, soil, sediment and water samples near/in the streams were analyzed in texture and metal contents of soil and sediment and in quality in water. From those analyses, the soils are loamy sand, sandy loam, loam and silty loam in texture. And, the sediments are slightly gravelly sand, gravelly sand and gravelly muddy sand in facies. Metal contents in soils and sediments are of high near Hwasuneup and Hwasun coalfield. In peculiar, P, Co, Li, Ni, Zn and Pb exceed over crust mean contents. Physico-chemistry of above streams according to pH-Eh and Piper's diagrams indicates that the streams are, typically, assigned to natural river water. Water qualities of BOD, T-N and T-P in areas near Hwasun coalfield, Dongmyeon and Hwasuneup are polluted over V level. Enrichment factor(EF) representing metal condensation in P, Cu, Zn and Pb appear near Hwasun coalfield and Hwasuneup from the soil and sediment samples, in part. Additionally, river water in dry season is very high in BOD, T-N, $Na^+$ and ${SO_4}^{2-}$. It is suggested that the relatively high metal contents in the stream be connected with above coalfield and urban areas.

Partial Purification and Characterization of the Alkaline Protease from Baccillus sp. (Bacillus sp.가 생산하는 호알카리성 Protease의 부분정제 및 특성)

  • 안장우;오태광;박용하;박관하
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.344-351
    • /
    • 1990
  • An alkalophilic microoganism producing a detergent-resistant alkaline protease was isolated from soil and identified as Baeiltus sp. The alkaline protease has been partially purified by ammonium sulfate fractionation, DEAE-Cellulose, CM-Cellulose and Sephdex G-100 column chromatography. The purified alkaline protease was highly active at pH 12-13 toward casein and stable at pH values from 6 to ll. The optimum temperature for the enzyme reaction was $55^{\circ}C$. The enzyme was completely inactivated by diisopropyl fluorophosphate (DFP) indicating that the enzyme was serine protease, but considerabiy stable in the presence of surface active agents.

  • PDF

Physico-chemical Characteristics of Soil Profile f Four Golf Courses in Kyonggi Province (경기도 네개 골프장의 토양단면의 물리화학적 특성)

  • 최병주;심재성;주영희;유병남
    • Asian Journal of Turfgrass Science
    • /
    • v.7 no.2_3
    • /
    • pp.55-60
    • /
    • 1993
  • Soil profile was well developed into four horizons, $A_1$, $A_3$, $B_2$and C at 100cm-depth in most four golf courses in Kyonggi province. Distribution of root system of Korean lawngrass was abundant in dark yellowish or yellowish brown $A_1$ horizon with low hardness(8~14mm yamanaka scale), moderately in yellowish brown $A_3$ horizon with moderate hardness(16~23mm) rarely in $B_3$horizon(15~60cm depth) and no in C horizon. Optimum soil hardness for good root growth of Korean lawngrass appeared to be less than 16mm mineral nutrient contents. Such as Ca++, Mg++, K+, Mn++ and Fe showed relatively higher concentration in lower horizon indicating the leaching of minerals. The increasing tendency of soil pH with depth seemed to the result of mineral leaching. There was significant positive correlation between Ca+Mg and pH, manganese content appeared to be too high(261~789ppm) in $A_1$ horizon. The contents of organic matter and phosphorus were bight in $A_1$ horizon and greatly varied among golf courses.

  • PDF

Effects of Simulated Acid Rain on Growth and Physiological Characteristics of Ginkgo biloba L. Seedlings and on Chemical Properties of the Tested Soil -I. Seed Germination and Growth (인공산성우(人工酸性雨)가 은행(銀杏)나무(Ginkgo biloba L.) 유묘(幼苗)의 생장(生長), 생리적(生理的) 특성(特性) 및 토양(土壤)의 화학적(化學的) 성질(性質)에 미치는 영향(影響) -I. 종자발아율(種子發芽率)과 생장(生長))

  • Kim, Gab Tae
    • Journal of Korean Society of Forest Science
    • /
    • v.76 no.2
    • /
    • pp.99-108
    • /
    • 1987
  • Half-sib seeds and one-year-old seedlings of Ginkgo biloba were treated with various simulated acid rains (pH 2.0, pH 3.0, pH 4.0 and pH 5.0) to examine the effects of acid rain on seed germination and seedling growth. The seeds were sown in a pot ($4500cm^3$) containing one of three different soils (nursery soil, mixed soil and sandy soil) and the seedlings were grown in the same pots as the seeds. Simulated acid rain was made by diluting sulfuric and nitric acid solution ($H_2SO_4$: $HNO_3$ = 3:1, V/V) with tap water and tap water (pH6.4), and treated by 5mm each time for three minutes during the growing seasons (April to October 1985 and April to August 1986). Acid rain treatments were done three times per week to potted seeds and seedlings by spraying the solutions. The seed germination, seedling growth and physiological characteristics of potted seedlings were compared among three soil types as well as among the various pH levels. The results obtained in this study were as follows: 1. Seed germination of Ginkgo biloba decreased significantly at pH 2.0 level in the field test, and also at the levels of both pH 2.0 and pH 3.0 in the laboratory test, compared to that at control. 2. For two-year-old seedlings, total, top and root dry weights per seedling were significantly different among the three soil types and among the levels of pH, and shoot growth was different only among the levels of pH. 3. For one-year-old seedlings, height and total and stem-branch dry weights per seedling were significantly different among the levels of pH.

  • PDF

Method of Environmental-Friendly Fertilization for Rice Cultivation after Vegetable Copping in Green House Soil (시설재배 후작 벼 재배를 위한 친환경적 시비 기술)

  • Jeon, Weon-Tai;Lee, Jae-Sang;Park, Ki-Do;Park, Chang-Yeong;Roh, Sug-Won;Yang, Won-Ha
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.191-197
    • /
    • 2005
  • Green house soils have been intensively cultivated with excessive application of compost and chemical fertilizer for vegetable growth. The objective of this study was to establish the reasonable fertilizer application system for rice cultivation in green house soil. Field experiment was carried out with rice cv. Geumo-byeo 1 in Jisan series soil (fine loamy, mixed, mesic family of Fluventic Haplaquepts) that was previously cropped with green pepper (Capsicum annuum L.) for the last 3 years. Treatment consisted of conventional fertilization $(N-P_2O_5-K_2O=11-4.5-5.7kg\;10a^{-1})$, no basal fertilization, 50% reduction of basal fertilization no top dressing, bulk blending fertilizer, and no fertilizer. The value of pH, available phosphate, and exchangeable potassium after experiment was lower than those before experiment while organic matter content was not difference in all treatment. The value of salt elusion was the highest in no basal fertilization plot. The amount of $NH_4-N$ in soil was higher in growth stage of rice as fertilizer amount increased in 1998. The changes of plant height and tiller were higher as fertilizer amount increased. Thousand-grain weight as yield component was higher in no basal fertilization plot all the year because of decreasing panicle. There was no significant difference in rice yield between treatments in 1998. However, conventional fertilization resulted in significantly increased rice yield in 1999. Nitrogen use efficiency was the highest in no basal fertilization plot in 1998 and in conventional fertilization plot in 1998. Our results suggest that no basal fertilization be best to increase salt elusion with slightly increased yield in first year for rice cropping after vegetable harvesting, which method improves fertilization efficiency. However, conventional fertilization was good for second rice cropping after vegetable harvesting in greenhouse.

Effects of streambed geomorphology on nitrous oxide flux are influenced by carbon availability (하상 미지형에 따른 N2O 발생량 변화 효과에 대한 탄소 가용성의 영향)

  • Ko, Jongmin;Kim, Youngsun;Ji, Un;Kang, Hojeong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.917-929
    • /
    • 2019
  • Denitrification in streams is of great importance because it is essential for amelioration of water quality and accurate estimation of $N_2O$ budgets. Denitrification is a major biological source or sink of $N_2O$, an important greenhouse gas, which is a multi-step respiratory process that converts nitrate ($NO_3{^-}$) to gaseous forms of nitrogen ($N_2$ or $N_2O$). In aquatic ecosystems, the complex interactions of water flooding condition, substrate supply, hydrodynamic and biogeochemical properties modulate the extent of multi-step reactions required for $N_2O$ flux. Although water flow in streambed and residence time affect reaction output, effects of a complex interaction of hydrodynamic, geomorphology and biogeochemical controls on the magnitude of denitrification in streams are still illusive. In this work, we built a two-dimensional water flow channel and measured $N_2O$ flux from channel sediment with different bed geomorphology by using static closed chambers. Two independent experiments were conducted with identical flume and geomorphology but sediment with differences in dissolved organic carbon (DOC). The experiment flume was a circulation channel through which the effluent flows back, and the size of it was $37m{\times}1.2m{\times}1m$. Five days before the experiment began, urea fertilizer (46% N) was added to sediment with the rate of $0.5kg\;N/m^2$. A sand dune (1 m length and 0.15 m height) was made at the middle of channel to simulate variations in microtopography. In high- DOC experiment, $N_2O$ flux increases in the direction of flow, while the highest flux ($14.6{\pm}8.40{\mu}g\;N_2O-N/m^2\;hr$) was measured in the slope on the back side of the sand dune. followed by decreases afterward. In contrast, low DOC sediment did not show the geomorphological variations. We found that even though topographic variation influenced $N_2O$ flux and chemical properties, this effect is highly constrained by carbon availability.

Economic Analysis, Growth and Pests of Wheat (Triticum aestivum L.) in Gelatin·Chitin Microorganisms-treated Organic Culture (젤라틴·키틴분해미생물을 이용한 밀 유기재배와 관행재배의 생육, 병해충 발생조사 및 경제성 분석)

  • Ahn, Philip;Lee, Jiho;Cha, Kwang-Hong;Seo, Dong-Jun;An, Kyu-Nam;Yoon, Chang-Yong;Kim, Kil-Yong;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.29 no.2
    • /
    • pp.223-240
    • /
    • 2021
  • This study was carried out to investigate the economic value of organic wheat production using gelatin·chitin microorganisms in Gwangsan-gu, Gwangju city. The soil condition of experiment field was clay loam Jisan series. The organically cultivated fields were sprayed gelatin and chitin degrading bacteria. The test was performed at conventionally cultivated field and organically cultivated field. Emergence of weed on organically cultivated field was significantly higher than conventionally cultivated field which sprayed herbicide before seeding. Weed emergence have a critical impact on grain yield. Occurrence of diseases and insect pests were higher than conventionally cultivated fields. In 2019, the amount of lodging in conventionally cultivated field were higher than conventionally cultivated field. In 2020, lodging and wet injury were occur in both field. Comparing yield element between organically and conventionally cultivated experimental area, grain yield in organically cultivated field was shown slightly higher amount than conventionally cultivated field. However in the actual yield of 2019, organically cultivated field shows 20% deceased yield because of overgrown weed. In 2020, weed emergence and yellow mosaic virus by wet injury cause 30% decease in the grain yield in organically cultivated field. Content of protein, carbohydrates, ash, water and fat in the grain were not different significance. In 2019, net incomes of conventionally cultivated wheat was 461,031 won/0.1 ha while organically cultivated wheat was 443,437 won/0.1 ha. In the rate of income, conventionally cultivated field was 83.0% as against organically cultivated field (73.3%). In 2020, net incomes of organically cultivated wheat was 437,812 won/0.1 ha while conventionally cultivated wheat was 418,281 won/0.1 ha. In the rate of income, conventionally cultivated field was 81.6% as against organically cultivated field (73.0%).

The Geochemical Characteristics of the River Water in the Han River Drainage Basin (한강수계분지내 하천수의 지구화학적 특성)

  • 서혜영;김규한
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.3
    • /
    • pp.130-143
    • /
    • 1997
  • To investigate geochemical characteristics and the sources of the dissolved ion species in the river water in the Han river drainage basin, samples were collected at 60 sites from the Han river drainage basin. The data for. pH, conductivity, TDS (total dissolved solid), temperature, and concentrations of dissloved ions were obtained as follows : (1) The geochemical characteristics of the surface water in the South and North Han river drainage basins are mainly controlled by bed rock geology in the drainage basin and in the main stream of the Han river considerably affected by anthropogenic pollution. The South Han river water samples have high concentrations of $Ca^{2+}$ (ave. 15.42 ppm), $Mg^{2+}$ (ave. 2.74 ppm), HC $O_3$$^{[-10]}$ (ave. 51.9 ppm), which evidently indicates that the bed rock geology in a limestone area mainly controls the surface water chemistry. The concentration of S $O_4$$^{2-}$ is remarkably high (SHR10-2 : 129.9 ppm) because of acid mine drainage from the metal and coal mines in the upper reaches of the South Han river. (2) The South Han river and the North Han river join the Han river. in the Yangsuri, Kyounggido and flow through Seoul metropolitan city. The mixing ratio is about 60:40 at the meeting point (sample number HRl0). (3) The result of factor analysis suggests that the pollution factor accounts for about 79% and the bed rock type factor accounts for about 7% of the data variation. This means that the geochemical characteristics of the Han river water mainly controlled by anthropogenic pollution in the South Han river and main stream of the Han river drainage basin. (4) The chemical data for four tributaries such as the Wangsukcheon, the Tancheon, the Zunuangcheon, and the Anyangcheon show that the concentration of pollution elements such as N $O_2$, C $l^{-}$, P $O_4$$^{3-}$, S $O_4$$^{2-}$ and Mn are high due to municipal waste disposal.

  • PDF

Effects of Mixed Application of Chemical Fertilizer and Liquid Swine Manure on Agronomic Characteristics, Yield and Feed Value of Rye (Secale cereale L.) (화학비료와 발효 돈분 액비 혼용 시용이 호밀(Secale cereale L.)의 생육특성 및 영양성분에 미치는 영향)

  • Sang Moo Lee
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.4
    • /
    • pp.215-221
    • /
    • 2022
  • This study was carried out to investigate the growth characteristics, yield and chemical compositions of rye according to mixing ratio of chemical fertilize r(CF) and liquid swine manure (LSM) in paddy field cultivation. The experimental design was arranged in a randomized block design with three replications. The manure fertilizer ratio of five treatments were CF 100% + LSM 0% (C), CF 70% + LSM 30% (T1), CF 50% + LSM 50% (T2), CF 30% + LSM 70% (T3), and CF 0% + LSM 100% (T4) of rye. At this time, the application of liquid swine manure was based solely on nitrogen. Plant length did not show significant differences among treatments. Ear length, leaf length and leaf width were the longest in C, T3, and T2, respectively (p<0.05). The stem diameter showed in the order of T4 > T3 > T2 > T1 > C, which was thicker as the LSM application rate increased (p<0.05). Fresh, dry matter and total digestible nutrient (TDN) yield were the highest in T4 (p<0.05), whereas the lowest in C treatment. Crude protein, neutral detergent fiber (NDF), acid detergent fiber (ADF) and crude fiber content were did not show significant difference among treatments. However, compared to C, crude fat and crude ash were significantly higher in T2 and T3, respectively (p<0.05). Total mineral content decreased significantly as the LSM application rate increased (p<0.05). Total free sugar showed high in T3 and T4 with a high LSM ratio, but showed significantly lower in chemical fertilizer treatment (C) and low LSM treatment (T1) (p<0.05). The analysis of all the above results suggests that the application of LSM is very effective, considering the dry matter yield and the contents of free sugar. In addition, LSM may be possible to grow rye without chemical fertilizer.