• Title/Summary/Keyword: 토양센서

Search Result 210, Processing Time 0.041 seconds

Smart Pot Using the Arduino (아두이노를 이용한 스마트 화분)

  • Park, Hye-Jin;Kim, Jin-Hyeong;Jeon, EunKwang;Lee, Hwa-Min
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.825-826
    • /
    • 2016
  • 토양 습도 센서를 이용하여 화분의 습도를 측정하며 아두이노 상의 모터를 이용하여 화분에 물을 주어 화분의 알맞은 수분정도를 맞춰줄 수 있으며 온도 센서를 이용하여 화분이 자라는 환경의 온도를 측정하여 너무 더워 말라죽지 않게 조절할 수 있다. 본 논문에서는 아두이노(Arduino)를 기반으로 사용자가 키우는 화분에 여러 센서를 장착하여 수집한 수치값에 따라 습도와 온도를 조절하여 화분의 상태를 조절할 수 있다. 그 결과 사용자가 화분에 크게 관심을 기울이지 않아도 성공적으로 화분을 키워낼 수 있을 것이다.

Factors Affecting Remotely Sensed Snow Depth (원격탐사 기반의 적설량 측정에 관한 오차요인 분석)

  • Byun, Kyu-Hyun;Choi, Min-Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.63-66
    • /
    • 2012
  • 최근 기후변화와 관련하여 수많은 자연재해 현상이 빈번하게 발생하고 있다. 특히 국지적인 폭설과 관련한 자연재해는 재산상의 피해뿐만 아니라 수많은 인명피해를 야기하고 있다. 또한 적설은 단순히 방재 차원을 넘어서 물의 순환과정을 해석하는 데에도 중요한 부분으로 인식되고 있다. 특히 수문학적 측면에서 적설은 인근 하천유량 및 토양수분에 영향을 미치는 주요한 인자로서 이에 관한 세밀한 연구가 진행되고 있다. 따라서 기존의 접근 방식을 넘어서 더욱 능동이고 즉각적인 형태의 적설 관측의 필요성이 대두 되고 있는 시점이다. 지점 관측의 한계성을 보완하기 위해 인공위성에 탑재된 마이크로파 센서를 활용한 적설 관측시스템이 제안되어 이에 대한 검증도 활발히 진행되고 있다. NASA의 Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E)는 마이크로파 센서로서 전 지구적인 물과 에너지 흐름에 관한 다양한 정보를 제공하고 있으며, 이중에는 적설 관측을 위하여 AMSR-E의 SNOW WATER EQUIVALENT PRODUCT (SWE)를 이용한 연구가 이루어지고 있다. 본 연구에서는 한반도내에서의 관측소 실측 자료를 바탕으로 AMSR-E SWE에 대한 검증작업을 실시하였으며, 현재 인공위성을 활용한 적설관측 체계의 오차를 유발하는 요인에 대해 분석했다.

  • PDF

Soil Organic Carbon Determination for Calcareous Soils (석회암 유래 토양의 토양유기탄소 분석법 연구)

  • Jung, Won-Kyo;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.396-402
    • /
    • 2006
  • Soil organic carbon has long been considered as the most critical factor to evaluate the soil quality, fertility, and fertilizer prescription. In addition, soil organic carbon may impact on greenhouse gas effects and global warming. Because of that, the management of soil organic carbon is increasingly important not only for improving soil quality but also for managing soil as a greenhouse gas source. Both wet and dry combustion have been used to determine soil organic carbon. Many benefits, such as automation and less labor, could the dry combustion method become more popular. Inorganic form of carbon could overestimate soil organic carbon when the dry combustion method was applied. Determination of soil inorganic carbon may contribute to the improved accuracy of soil organic carbon analysis using dry combustion method. Objectives of this research were 1) to develop soil inorganic carbon determination method using modified digital pressure calcimeter and 2) to evaluate soil organic carbon from calcareous soils using the dry and wet combustion method. Results showed that the significant linear relationship was found between soil inorganic carbon content and pressure calcimeter output. Inorganic carbon ranged from 22% to 28% of total carbon in the calcareous soil samples. Soil organic carbon content by dry combustion for calcareous soil was determined by subtracting inorganic carbon measured by the digital pressure calcimeter from total carbon. Soil organic carbon determined by dry combustion method was significantly correlated with that by wet combustion method. In conclusion, the digital pressure calcimeter may use to improve soil organic carbon determination for the calcareous soils by subtracting of soil inorganic carbon from total carbon determined by dry combustion method.

A Dataset from a Test-bed to Develop Soil Moisture Estimation Technology for Upland Fields (농경지 토양수분 추정 기술 개발을 위한 테스트 베드 데이터 세트)

  • Kang, Minseok;Cho, Sungsik;Kim, Jongho;Sohn, Seung-Won;Choi, Sung-Won;Park, Juhan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.107-116
    • /
    • 2020
  • In this data paper, we share the dataset obtained during 2019 from the test-bed to develop soil moisture estimation technology for upland fields, which was built in Seosan and Taean, South Korea on May 3. T his dataset includes various eco-hydro-meteorological variables such as soil moisture, evapotranspiration, precipitation, radiation, temperature, humidity, and vegetation indices from the test-bed nearby the Automated Agricultural Observing System (AAOS) in Seosan operated by the Korea Meteorological Administration. T here are three remarkable points of the dataset: (1) It can be utilized to develop and evaluate spatial scaling technology of soil moisture because the areal measurement with wide spatial representativeness using a COSMIC-ray neutron sensor as well as the point measurement using frequency/time domain reflectometry (FDR/TDR) sensors were conducted simultaneously, (2) it can be used to enhance understanding of how soil moisture and crop growth interact with each other because crop growth was also monitored using the Smart Surface Sensing System (4S), and (3) it is possible to evaluate the surface water balance by measuring evapotranspiration using an eddy covariance system.

Research Status of Satellite-based Evapotranspiration and Soil Moisture Estimations in South Korea (위성기반 증발산량 및 토양수분량 산정 국내 연구동향)

  • Choi, Ga-young;Cho, Younghyun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1141-1180
    • /
    • 2022
  • The application of satellite imageries has increased in the field of hydrology and water resources in recent years. However, challenges have been encountered on obtaining accurate evapotranspiration and soil moisture. Therefore, present researches have emphasized the necessity to obtain estimations of satellite-based evapotranspiration and soil moisture with related development researches. In this study, we presented the research status in Korea by investigating the current trends and methodologies for evapotranspiration and soil moisture. As a result of examining the detailed methodologies, we have ascertained that, in general, evapotranspiration is estimated using Energy balance models, such as Surface Energy Balance Algorithm for Land (SEBAL) and Mapping Evapotranspiration with Internalized Calibration (METRIC). In addition, Penman-Monteith and Priestley-Taylor equations are also used to estimate evapotranspiration. In the case of soil moisture, in general, active (AMSR-E, AMSR2, MIRAS, and SMAP) and passive (ASCAT and SAR)sensors are used for estimation. In terms of statistics, deep learning, as well as linear regression equations and artificial neural networks, are used for estimating these parameters. There were a number of research cases in which various indices were calculated using satellite-based data and applied to the characterization of drought. In some cases, hydrological cycle factors of evapotranspiration and soil moisture were calculated based on the Land Surface Model (LSM). Through this process, by comparing, reviewing, and presenting major detailed methodologies, we intend to use these references in related research, and lay the foundation for the advancement of researches on the calculation of satellite-based hydrological cycle data in the future.

Determination of Mercury Ion in Contaminated Soil by Rhodamine B Hydrazide (형광화학센서를 이용한 용출기반 토양 수은 오염조사)

  • Kim, Kyungtae;Park, Junboum
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.1-5
    • /
    • 2016
  • Rhodamine B Hydrazide as a novel fluorescent and colorimetric probe exhibiting remarkably selective fluorescence enhancement toward Hg2+ ion over other 16 metal ions is herein introduced. The probe reacts with Hg2+ ion followed by its spirolactam ring-opening to give a remarkable enhancement of absorption maximum at 550 nm as well as an enhanced fluorescence intensity at 580 nm in aqueous media. Upon titration with Hg2+ ion in various concentration of 10~200 uM, we found that the probe shows a marked color change from colorless to pink, enabling naked-eye detection toward mercury ion. In addition, in the presence of Hg2+ ion, the probe gave rise to change from non-florescence to strong orange fluorescence (Off-On) with a good linearity of R2=0.97. This preliminary results demonstrate that the fluorescent chemosensor we herein introduced can open a new strategy for marked selective and sensitive detection of mercury ions in contaminated soil containing various metal ions.

Calibrating Capacitance Sensor for Determining Water Content of Volcanic-Ash Soils (화산회토양의 수분함량측정을 위한 Capacitance Soil Moisture Sensor의 Calibration)

  • Moon, Kyung-Hwan;Joa, Jae-Ho;Choi, Kyung-San;Seo, Hyoeng-Ho;Lim, Han-Cheol;Hyun, Hae-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.331-336
    • /
    • 2011
  • Capacitance soil moisture sensor is extensively used by soil research and irrigation management with its convenience and accuracy. This experiment was conducted to evaluate the acceptability of capacitance soil moisture sensor, named EnviroSCAN made by Sentek Ltd., in Jeju Island where volcanic ash soils are widely distributed, and to calibrate it to various soils with different amount of soil organic matter. For sensor calibration equation of volcanic ash soils, a logarithm function is better than a typical power function of non-volcanic ash soils. So there are possibilities of under evaluated in soil water contents in very wet and very dry conditions by using typical power function with volcanic ash soil areas. We suggested practical coefficients of typical calibration equation for using capacitance sensor in volcanic ash soils, also suggested equations for estimation of them with soil organic matter contents. The measurement of soil water content with a capacitance sensor can be affected by some soil characteristics such as porosity, soil organic matter content, EC, etc. So those factors should be controlled for improving the accuracy of measurement.

Environment Monitoring System Using Autonomous Mobile Robot (자율 주행 로봇을 이용한 환경 모니터링 시스템)

  • Jeong, Hye-jin;Kim, Won-jung;Son, Cheol-su;Cho, Byung-lok;Yang, Su-yeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.1038-1041
    • /
    • 2009
  • Wireless sensor network with wireless sensor nodes which equipped with temperature, humidity, illumination, or soil sensor etc, get a natural environment information and analyze and utilized variety way.these network consist of a short distance wireless communication and multi-hop techniques with multiple nodes equipped low-power wireless transceivers. so the characteristic of the data collected through the wireless sensor network is obtained from compact nodes within a limited range. However, to get a data from the wireless sensor nodes scattered in a wide range, this network needs a wireless transceiver that consumes many power or a lot of intermediate nodes. then, merit of low cost and low electrical energy decrease. To solve this problem, this paper offers environment monitoring system using autonomous mobile robot that collect data from groups of each sensor networks scattered widely.

  • PDF

A Study for establishment of soil moisture station in mountain terrain (1): the representative analysis of soil moisture for construction of Cosmic-ray verification system (산악 지형에서의 토양수분 관측소 구축을 위한 연구(1): Cosmic-ray 검증시스템 구축을 위한 토양수분량 대표성 분석 연구)

  • Kim, Kiyoung;Jung, Sungwon;Lee, Yeongil
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.51-60
    • /
    • 2019
  • The major purpose of this study is to construct an in-situ soil moisture verification network employing Frequency Domain Reflectometry (FDR) sensors for Cosmic-ray soil moisture observation system operation as well as long-term field-scale soil moisture monitoring. The test bed of Cosmic-ray and FDR verification network system was established at the Sulma Catchment, in connection with the existing instrumentations for integrated data provision of various hydrologic variables. This test bed includes one Cosmic-ray Neutron Probe (CRNP) and ten FDR stations with four different measurement depths (10 cm, 20 cm, 30 cm, and 40 cm) at each station, and has been operating since July 2018. Furthermore, to assess the reliability of the in-situ verification network, the volumetric water content data measured by FDR sensors were compared to those calculated through the core sampling method. The evaluation results of FDR sensors- measured soil moisture against sampling method during the study period indicated a reasonable agreement, with average values of $bias=-0.03m^3/m^3$ and RMSE $0.03m^3/m^3$, revealing that this FDR network is adequate to provide long-term reliable field-scale soil moisture monitoring at Sulmacheon basin. In addition, soil moisture time series observed at all FDR stations during the study period generally respond well to the rainfall events; and at some locations, the characteristics of rainfall water intercepted by canopy were also identified. The Temporal Stability Analysis (TSA) was performed for all FDR stations located within the CRNP footprint at each measurement depth to determine the representative locations for field-average soil moisture at different soil profiles of the verification network. The TSA results showed that superior performances were obtained at FDR 5 for 10 cm depth, FDR 8 for 20 cm depth, FDR2 for 30 cm depth, and FDR1 for 40 cm depth, respectively; demonstrating that those aforementioned stations can be regarded as temporal stable locations to represent field mean soil moisture measurements at their corresponding measurement depths. Although the limit on study duration has been presented, the analysis results of this study can provide useful knowledge on soil moisture variability and stability at the test bed, as well as supporting the utilization of the Cosmic-ray observation system for long-term field-scale soil moisture monitoring.

Establishment of Web-based Remote Monitoring System for Greenhouse Environment (웹기반의 온실환경 원격 모니터링 시스템 구축)

  • Kim, Kyeong-Og;Park, Kyoung-Wook;Kim, Jong-Chan;Jang, Moon-Suk;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.1
    • /
    • pp.77-83
    • /
    • 2011
  • This paper proposes a remote monitoring system, which manages crops' growth environment on a real-time basis by applying to greenhouses Green U-IT technology connecting environment control equipment such as temperature sensors, soil sensors, and moisture censors with computers. Information on greenhouses' environment is stored in a database, and by utilizing linear regression analysis and differential item functioning (DIF) analysis, optimal information on growth and environment is extracted from stored information in the form of items desired by users, and compared, analyzed, and monitored. By linking greenhouse environment control system with web environment and remotely controlling the system, users do not need to visit farmland and can remotely control greenhouses' environment on a real-time basis. Therefore farmhouses' production efficiency may be enhanced by continuously providing optimal growth environment for plants.