토양수분은 생태수문학에서 식생과의 상호작용의 중요한 인자이자, 대기와의 상호작용으로 인한 총체적인 물 순환에 밀접한 관련이 있다. 수문학적으로는 증발, 침투, 지하수 함량, 토양 침식, 식생 분포 등을 지배하는 중요한 요소이고, 특히 시 공간적 분포특성은 강수 사상 후 토양으로의 침투 및 토양수분의 재분포, 증발산과 불포화대에서의 오염물의 이송을 예측하는데 매우 중요하다. 또한, '07년 하천법 개정으로 증발산량 및 토양수분량이 신규 수문조사 항목으로 추가되어, 토양수분 측정에 대한 필요성이 높아졌다. 따라서, 2008년 5월, K-water연구원에서는 현재 시험유역으로 운영하고 있는 용담시험유역에 토양수분관측망(6개 관측소)을 구축하였다. 토양수분계는 토양수분을 결정하는 가장 중요한 인자인 강우자료의 획득이 이루어지는 지점에 설치하여 정확도와 신뢰도를 높일 수 있도록 용담시험 유역 내 6개 우량관측소에 설치하였다. 하지만 장비의 노후화에 따른 자료 취득의 어려움으로 인하여 2013년 4월, 토양수분계를 전면 교체하였다. 토양수분계는 기존의 FDR 방식에서 EC 농도에 대한 영향이 가장 적고, 플럭스 타워에 위치한 토양수분계 센서와 동일한 TDR 방식의 센서로 장비를 전면 교체하였다. 센서 설치 장소 변경에 따른 TDR 센서의 검증과 그리고 흙의 종류, 입도, 다짐도, 온도 등에 의한 오차가 발생 여부를 판단하기 위하여 이에 대한 보정을 실시하였다. 원지반 시료채취를 통하여 토양수분량을 측정하였고, TDR 센서에 의해 측정된 토양수분량과 채취된 시료에서 측정된 토양수분량의 결과를 비교하였고, 각 지점별 토양구성비와 전기전도도 조건을 고려하여 각 토층별 계수적용을 달리하여 센서 보정을 실시하였다. 그 결과 기존 센서 제조사에서 제안한 방정식을 그대로 사용하는 것 보다는 센서 검증을 통하여 얻은 계수보정에 의한 토양수분 변환식을 사용하는 것이 정확한 현장 자료를 확보할 수 있고, 신뢰도 높은 자료를 얻을 수 있다고 판단된다.
관개나 수분수지 규명을 위한 기본적인 자료는 토양수분 함량이다. 그러나, 포장상태에서의 토양수분 함량은 직접 측정하는 것이 쉽지 않기 때문에 많은 경우 건조기를 이용한 중량수분 함량측정 방법을 이용하거나 토양수분 포텐셜 측정용인 텐시오미터를 이용한 토양수분의 에너지 특성을 관개에 활용하는 것이 현실이었다. 중량수분 함량은 시료를 채취해서 건조하기 때문에 시료채취 당시의 토양수분 함량을 아는 것이 어렵고, 토양수분 포텐셜은 에너지를 측정하는 것이기 때문에 이 역시 토양의 수분함량을 얻는 것이 불가능 하다. 따라서, 최근에 이런 측정상의 어려움을 극복하기 위해 여러 나라에서 포장에서의 토양수분 함량을 직접 측정하는 다양한 센서를 개발하고 있고 있다. 그 중 몇 가지는 현재 우리나라에 공급되고 있는데, 가격 등의 문제로 별로 알려져 있지는 않다. 센서는 현장에서 수분함량을 파악할 수 있는 장점이 있기 때문에 관개에 직접 적용이 가능하며 자동화시설이나 수분수지 모형 산정에도 활용할 수 있다. 본 시험은 우리나라에 소개되어 있는 몇 가지의 토양수분 측정용 센서를 현장에서 코어를 이용해 측정한 용적수분 함량과 비교하여 센서의 정확도나 이용 가능성을 검정하고자 하였다. 코어를 이용해 실측한 토양 용적수분 함량과 비교하고자 7종의 센서를 선택해 실험에 이용하였다. 가격이 비싼 것으로 알려진 TDR 형태의 센서가 2종이었으며, 나머지 5종은 FDR 형태의 센서였다. TDR 센서는 Soilmoisture사에서 제작한 MiniTrase와 Imko 사의 Trime이고, FDR은 Sentek사에서 개발한 EasyAG, EnviroSCAN과 Delta-T사에서 제작한 PR-1과 WET-2 및 Decagon사에서 제작한 $ECH_2O$ 센서였다. 실헙방법은 본량사양토인 포장에서 건조한 상태인 시험구와 물이 포화된 시험구를 만들어 놓고, 그곳에서 센서 종류별로, 측정 깊이별로 토양의 용적수분 함량을 측정하고, 센서로 측정한 위치 바로 옆에서 코어를 이용해 토양시료를 채취하고 이를 건조기에 건조해 용적수분 함량을 측정하였다. 비교결과 TDR인 MiniTrase가 결정계수$(r^2)$가 0.964이고 표준오차(SE)가 0.01로 좋은 결과를 보여줬고 WET-2가 $r^2$와 SE가 0.932와 0.013이였으며 EasyAG는 0.877과 0.0211, EnviroSCAN은 0.803과 0.0259의 값을 보였다. 일반적으로 토양수분 함량 측정오차가 1% 미만인 센서가 정확한 수분함량 해석을 유도할 것이지만 위의 센서 중 MiniTrase를 비롯한 4개의 센서 정도가 토양의 수분 함량을 측정하는데 유용할 것이라는 결론을 얻었다.
노지 토양의 효율적인 수분관리를 위해서는 토양수분센서를 알맞게 사용하여야 하며, 특히 노지 과수와 같이 넓은 뿌리환경을 가지는 토양 환경에서는 적합한 센서 설치 위치가 매우 중요하다. 이에 본 실험에서는 노지 과수원에서 다양한 거리와 깊이에 토양수분장력 센서를 설치하여 각 위치의 토양수분장력 값을 측정하고, 센서 설치 위치에 따른 토양수분 변화 정도를 비교하여, 이에 따른 최적 토양수분센서 설치 위치를 알아보기 위해 수행하였다. 국내 두 지역에 위치한 사과 및 배 과수원에서 각 과수의 수간으로부터 거리 20, 40, 60cm, 토양표면으로부터 깊이 10, 20, 30cm로 각각 9개의 토양수분장력센서(TEROS 21, METER Group)를 설치하여 2년간의 토양수분장력 변화 정도를 비교 분석하였다. 두 과수원 모두 센서가 과수의 수간으로부터 가까울수록, 토양의 표면으로부터 얕게 설치되어 있을수록 토양수분장력 값의 변화 정도가 크게 나타났으며, 20cm × 10cm(과수의 수간으로부터 거리 × 토양표면으로부터 깊이) 지점에서의 토양수분장력 값의 변화 정도가 가장 큰 것으로 나타나 토양수분센서 설치에 가장 적합한 지점으로 판단되었다. 그러나 연도가 달라짐에 따라 과수의 뿌리가 생장하며 센서 설치 위치에 따른 토양수분장력의 변화 정도 양상이 조금씩 변하는 것을 확인할 수 있었다. 노지과수와 같이 장기간 재배하는 작물의 토양수분 환경을 알맞게 측정하기 위해서는 현장에서의 주기적인 토양수분 변화 관찰 및 보완을 통해 센서 설치 위치를 변경하는 노력도 필요할 것으로 나타났다.
농작물 재배에서 토양 중의 양분을 일정 수준으로 유지하는 것은 매우 중요한 기술이다. 일반적으로 전년에 수확이후의 토양에 대해 토양중의 이화석 성분을 분석하여 일정한 시비 기준에 의해 시비처방전을 만들고 이에 따라 비배작업을 수행한다. 이러한 목적을 위해서는 토양 이화학성을 자주 측정해야 하는데, 기존의 토양유기물, 수분 및 전질소와 같은 이화학 성분 측정방법은 조작에 전문성이 필요하고 현장에서 결과 값을 알 수 없는 단점이 있었다 이러한 단점을 해결하고, 정밀농업형 기계에 맞는 실시간 처방을 위해서는 비접촉형 센서의 개발이 요구된다. 비접촉형 센서 개발을 위해 주로 사용되는 방법이 근적외선 반사를 분석하는 방법이다. 즉, 측정하고자 하는 토양에 전자파 에너지가 투입되고 반사될 때 생기는 에너지 차이를 수량화하여 토양 유기물 함량과의 상관관계로 토양 내 유기물 함량을 측정한다. 정밀농업형 센서는 일반 계측용 센서와 달리, 측정값을 몇 개의 그룹으로 구별하게 된다. 측정값이 어떠한 그룹에 속해 있는가에 따라 전문가 시스템에 의한 농작업 의사결정이 내려지고, 그 결정에 따라 변량형 농작업이 수행되게 된다. (중략)
농업적 가뭄은 토양의 수분함량(토양수분)이 마르기 시작하면서 식생 활동에 영향을 주는 것으로 정의할 수 있다. 광범위한 농업적 가뭄을 판별하기 위해 인공위성 자료를 토대로 토양수분을 산정하고 이를 이용해 가뭄지수를 산정하고, 가뭄 상태를 판별한다. 기존 인공위성 기반의 토양수분의 경우, microwave sensor에서 제공되는 밝기온도(brightness temperature)를 통해 토양수분을 추정하는 방식이 일반적으로 활용되었다. 하지만, microwave sensor에서 제공되는 자료들의 공간해상도가 10 km 이상이기 때문에, 한반도나 더 작게는 유역 단위, 행정 단위별 가뭄 분석을 하기에는 적합하지 않다. 이에 본 연구에서는 공간 해상도 500m의 광학센서(visible infrared imaging radiometer suite sensor (VIIRS))에서 제공되는 지표면 온도(land surface temperature)와 지표 반사도(land surface albedo) 자료들을 조합하여 토양수분을 산정하는 방식을 제안하고, 산출된 토양수분으로 농업적 가뭄을 모니터링한 결과를 제시하고자 한다. 기존의 microwave sensor로 산출된 토양수분 결과 값과의 비교 및 검증을 통해 광학센서를 통한 토양수분 산출물의 한반도 내 적용성을 확인할 수 있다.
적절한 양분 관리와 식물 생육 증진을 위해 토양의 양분 수준을 반영하는 토양 센서가 요구된다. 토양의 양분을 모니터링할 수 있는 센서가 없으므로 전기전도도(EC) 센서를 토양의 양분 수준을 평가 하는데 사용할 수 있다. 센서 EC 값과 토양 온도, 수분 함량과 양분 함량과의 관계를 파악하면 EC 센서를 활용한 토양 양분 관리가 가능할 것이다. 그러나 센서 EC 값과 식물이 이용할 수 있는 양분의 관계는 구명되지 않았다. 따라서 본 연구의 목적은 고추와 브로콜리의 생육 기간동안 요소 비료 처리가 토양 센서 EC 값에 미치는 영향을 평가하고 토양에 존재하는 식물 유효태 양분 함량을 예측하는 것이다. 재배기간동안 주기적으로 토양을 채취하여 pH, EC를 측정하고 유효태 양분 함량을 분석하였다. 센서 EC 값은 수분 함량이 높아질수록 증가하였고 비료부족 처리구의 EC 값이 가장 낮게 나타났다. 센서 EC와 실제 토양 양분 함량과의 상관관계를 파악하기 위해 주성분 분석을 실시하였다. 센서 EC는 질산태질소와 유효태 칼슘과 강한 양의 상관관계를 보였다. 또한, 칼슘, 마그네슘, 칼륨, 인, 황, 질소와 같은 유효태 양분을 합한 값은 센서 EC 값과 관련이 있었다. 따라서 노지에서 EC 센서를 이용하여 양분 함량을 예측함으로써 적절한 양분 관리를 할 수 있을 것이다.
본 연구에서는 정밀시비를 위한 전자지도 작성 시스템을 개발하고, 질소 시비량 지도를 작성하였다. 개발된 토양 유기물 함량 계측 센서는 0.07%~7.96%가지의 토양 유기물 함량을 $R^2$= 0.85, SEP=0.72, bias=-0.13으로 계측할 수 있었으며, 작성된 시비량 지도를 이용한 시비는 58.7%의 정확성을 보였다. 시비량 지도에 의한 정밀시비는 획일적인 시비의 정밀시비 30.5%에 비해 91%의 정확성 향상을 보였다. 그러나 개발된 센서의 오차로 인하여 유기물 함량 등급 분류 간격이나 격자 간격 면에서 세분화된 지도는 작성할 수 없었다. 좀 더 정확하고 세분화된 시비량 지도 작성을 위해서는 오차 범위가 작은 정밀한 센서의 개발이 요구된다. 또한 토양 유기물 센서뿐만 아니라 다른 토양 상태를 계측할 수 있는 센서들이 개발된다면 다양하고 정확한 시비량 지도를 작성할 수 있을 것으로 판단된다. 작성된 전자 지도는 농작업의 의사결정에 도움을 주며, 빠른 처방이 가능할 것이다.
가뭄이 장기간 지속되어 농업적 가뭄 상태가 되면 토양의 수분이 마르기 시작하면서, 식생의 생장활동이 방해되고, 이는 식생의 광합성 활동까지 영향을 미친다. 광합성을 통해 대기 중의 이산화탄소가 흡수되고 산소 발생이 증가하는데, 광합성이 활발하지 못하면 상대적으로 대기 중의 이산화탄소 농도가 증가한다. 본 연구에서는 이러한 토양수분, 식생활동과 대기 중 이산화탄소의 농도의 관계를 다중분광센서인 MODerate resolution Imaging Spectroradiometer (MODIS) 산출물을 이용하여 분석하였다. 기존 토양수분의 경우, 마이크로파 센서를 통해 산출된 값을 활용했지만, 이는 상대적으로 공간 해상도가 조악하다는 단점을 갖고 있어서 면적이 작은 연구지역을 분석할 때에는 한계점을 갖고 있다. 이러한 문제를 해결하기 위하여 상대적으로 고해상도인 광학센서를 이용한 토양수분 산정 방법을 적용하였다. 또한, MODIS 총 일차생산량 (Gross Primary Productivity, GPP) 산출물을 이용하여 식생 호흡량과의 관계식을 통해 이산화탄소 플럭스를 계산하였다. 원격탐사 기반의 토양수분, 식생지수, 이산화탄소 플럭스를 한국에서 발생한 가뭄 기간 중, 2014년과 2015년도에 대하여 지점 관측자료인 플럭스 타워에서 제공되는 값과 비교 분석하였다. 분석한 결과 토양수분, 식생 지수, 탄소플럭스는 순차적으로 지연시간을 두고 상관성이 발생함을 확인하였다. 토양수분과 식생 지수 사이에는 1개월, 식생지수와 탄소플럭스는 0.5개월의 지연시간 후에 가장 높은 상관성을 보였다.
최근 원예작물의 지속가능한 생산을 위한 작물 생육환경 센싱 기반 복합환경제어시스템 연구와 산업적 이용이 부각되면서, 노지재배에 적용하기 적합한 토양센서 활용 방안 연구가 활발히 이루어지고 있다. 본 연구는 산업 및 연구 현장에서 많이 사용되고 있는 TEROS 12 FDR 센서(frequency domain reflectometry sensor)를 노지 과수원의 토양에 알맞게 활용하기 위하여 국내 세 지역 과수원 토양의 토성별 FDR 센서 활용 방법을 제시하고자 수행하였다. 실제 과수가 재배되고 있는 각 과수원에서 토양을 채취하여, 토성 및 토양수분보유곡선을 조사하였으며, 토양별 TEROS 12 센서 Raw 값과 이에 대응하는 용적수분함량 값을 선형 회귀 분석, 3차 회귀 분석을 통해 보정식을 얻은 뒤 제조사에서 제공하는 광질 토양 보정식과 비교 분석하였다. 채취한 세 과수원의 토양은 모두 토성이 달랐으며, 토성에 따라 각 보수력에 따른 용적수분함량 수치에 차이가 있었다. 또한, TEROS 12 센서 보정식에서는 모든 토양에서 3차 회귀 분석 보정식이 결정계수 0.95 이상으로 가장 높게 나타났으며, RMSE도 가장 낮게 나타났다. 제조사에서 제공하는 보정식을 사용하여 TEROS 12 센서의 용적수분함량을 보정할 경우 토양에 따라 실제 수치에 비해 최대 0.09-0.17m3·m-3가량 낮게 나타나, FDR 센서 사용시 적용 토양에 알맞은 보정이 반드시 선행되어야 함을 확인하였다. 또한 토성에 따라 토양의 보수력 구간에 따른 용적수분함량 범위의 차이가 있었으며, 토양 용적수분함량의 수치 해석에 보수력 정보가 수반되어야 할 것으로 나타났다. 또한, 사질이 많은 토양에서는 관수 개시점 측정을 위해 FDR 센서를 활용하는 데 있어 용적수분함량 측정 범위가 상대적으로 좁아 정밀도가 떨어질 것으로 판단되었다. 결론적으로 토양에서 FDR 센서를 통해 토양수분의 변화를 알맞게 해석하고 노지에서 알맞은 관수 시점을 선정하기 위해서는, 적용 토양의 수분보유특성을 파악하고 FDR 센서 보정을 선행하여 올바른 토양 수분 정보 제공이 필요할 것이다.
토양의 용적수분 함량을 현장에서 측정할 수 있어 토양 내 물 이동이나 관개관리에 효과적으로 이용할 수 있는 6종의 토양수분 센서에 대한 검정을 실시했다. TDR형태의 센서가 2종으로 토양단면측정용인 TRIME과 탐침형태인 Mini-TRASE이었으며, 4종은 FDR 형태의 센서로 토양단면 측정용인 EasyAG, EnviroSCAN, PR-1과 탐침형태의 WET-1 센서였다. 코어로 측정한 용적수분함량과 비교한 결과 TRIME은 1차 선형식의 관계에서 코어측정값과 약 2.4%의 오차를 나타냈고, Mini-TRASE는 코어 용적 수분함량과 약 1.4%의 오차를 나타냈으며, 이 오차는 실험에 사용했던 7종의 센서들 중에서 가장 작은 값이었다. EasyAG는 SF로 분석했을 때는 코어측정값과 약 2.6%의 오차를 나타냈고, 센서로 측정한 토양 수분 함량을 코어수분함량과 직접적으로 비교했을 때도 역시 약 2.6%의 오차를 나타냈다. EnviroSCAN은 SF로 분석했을 때는 코어측정값과 약 2.8%의 오차를 나타냈고, 센서로 측정한 토양수분 함량을 코어수분 함량과 직접적으로 비교했을 때는 2.6%의 오차를 나타냈다. WET-1은 센서로 측정한 값과 코어로 실측한 값 사이에 약 2.0%의 오차가 있음을 보여주고 있으며, 이것은 검정에 사용했던 FDR 센서들 중에서는 가장 작은 값이었다. PR-1은 측정시 access 튜브 내에서 방향을 조금씩 바꿀 때마다 측정값이 달리 나오는 경우가 많아 수분함량 측정횟수가 많지 않았으나 실측값과 약 4.7%의 오차를 보였다. 결론적으로 센서의 정확성을 검정하기 위해 사용된 6종의 센서 중 PR-1은 현장 측정에 문제가 있을 것으로 여겨진다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.