• Title/Summary/Keyword: 토양세정

Search Result 54, Processing Time 0.022 seconds

Solubilization Mechanism and Cosolvent Addition in Chemical Soil Washing (화학적 토양세정에서의 가용기작과 조용매의 효과)

  • 김현수;조대철
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.05a
    • /
    • pp.260-263
    • /
    • 2002
  • 이 연구는 과량의 유분(dodecane)으로 오염된 토양을 효율적으로 정화시키기 위한 화학적 토양세정(soil flushing)에서 알코올 성분에 의한 유동성을 고찰한 것이다. 탄소수가 다른 알코올 (methanol, ethanol, butanol)과 Tween-80 계면활성제를 세정용액으로 사용하여 혼합비, 조용매 종류 및 체류시간에 따른 세정결과를 도시하였다. 조용매 사용시 세척효율은 최대 94%(Butanol/Tween-80(w/w)=0.1) 이었다. 체류시간의 연장은 재흡착되는 admicelle의 증가로 말미암아 세정효율을 감소시키는 것으로 나타났다.

디젤오염 토양 정화를 위한 토양세정 및 응집효과

  • 박준석;박종은;신철호;원찬희;김승호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.285-288
    • /
    • 2004
  • 약 10,000 ing TPH/kg으로 오염시킨 디젤오염토양을 계면활성제로 세정한 결과 단일 계면활성제를 사용한 경우에는 POE12가 63%로 가장 세정효율이 우수하였다 단일 계면활성제를 혼합하여 세정한 결과 POE12와 SDS를 1%로 혼합하였을 때 10%의 세정증가효과가 있었으나, 다른 혼합액에서는 POE12를 단일로 사용한 경우와 유사하거나 오히려 감소하였다. 토양세정과 응집제를 사용하여 디젤오염토양을 정화할 경우 비이온 계면활성제인 POE12와 음이온 계면활성제인 SDS를 혼합하여 세정한 후 고분자 응집제인 A601p를 사용하여 세정액을 응집처리하는 것이 가장 효과적이었다.

  • PDF

토양세정기법의 유류 오염토양 적용을 위한 기초 연구

  • 소정현;최상일;조장환
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.283-286
    • /
    • 2002
  • 유류로 오염된 부지에 토양세정기법을 적용하기 위한 전 단계로, 실험실 규모의 컬럼실험을 통하여 pilot 규모 현장 적용을 위한 설계인자 및 최적 운전조건을 규명하고자 적정 세척제 종류와 농도, 배합비 및 세정용액 주입유량을 고찰하였다. 회분식실험 결과 POE$_{14}$와 SDS(1:1)를 1%로 적용한 흔합계면활성제의 효율이 가장 우수하였으나, 예비실험 결과 음이온계 계면활성제인 SDS는 미생물에 독성을 끼치는 경향이 있는 것으로 나타나 같은 농도에서 효율이 거의 유사한 POE$_{5}$와 POE$_{14}$ 혼합계면활성제를 이용하여 실험하였다. 선정된 혼합계면활성제를 적용하여 디젤 오염토양 세척능력을 검토한 결과 세척제 농도 1%까지는 효율이 증가하다가 1% 이상의 농도에서는 다시 감소하는 경향을 나타내었으며, 계면활성제 배합비는 1:1로 혼합하였을 경우 세척효율이 가장 우수하였다. 따라서 POE$_{5}$와 POE$_{14}$ (1:1) 1% 혼합계면활성제를 세척제로 선정하였다. 컬럼실험 결과, 주입 flux가 클수록 세정 제거된 총 유류의 양이 증가하였으며, 같은 pore volume의 세정용액 통과 시에는 flux가 작을수록 제거효율이 좋았다.

  • PDF

Surfactant Enhanced In-Situ Soil Flushing Pilot Test for the Soil and Groundwater Remediation in an Oil Contaminated Site (계면활성제 원위치 토양 세정법을 이용한 유류 오염 지역 토양.지하수 정화 실증 시험)

  • 이민희;정상용;최상일;강동환;김민철
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.77-86
    • /
    • 2002
  • Surfactant enhanced in-situ soil flushing was performed to remediate the soil and groundwater at an oil contaminated site, where had been used as a military vehicle repair area for 40 years. A section from the contaminated site (4.5 m $\times$ 4.5 m $\times$ 6.0 m) was selected for the research, which was composed of heterogeneous sandy and silt-sandy soils with average $K_d$ of 2.0$\times$$10^{-4}$cm/sec. Two percent of sorbitan monooleate (POE 20) and 0.07% of iso-prophyl alcohol were mixed for the surfactant solution and 3 pore volumes of surfactant solution were injected to remove oil from the contaminated section. Four injection wells and two extraction wells were built in the section to flush surfactant solution. Water samples taken from extraction wells and the storage tank were analyzed on a gas-chromatography (GC) for TPH concentration in the effluent with different time. Five pore volumes of solution were extracted while TPH concentration in soil and groundwater at the section were below the Waste Water Discharge Limit (WWDL). The effluent TPH concentration from wells with only water flushing was below 10 ppm. However, the effluent concentration using surfactant solution flushing increased to 1751 ppm, which was more than 170 times compared with the concentration with only water flushing. Total 18.5 kg of oil (TPH) was removed from the soil and groundwater at the section. The concentration of heavy metals in the effluent solution also increased with the increase of TPH concentration, suggesting that the surfactant enhanced in-situ flushing be available to remove not only oil but heavy metals from contaminated sites. The removal efficiency of surfactant enhanced in-situ flushing was investigated at the real contaminated site in Korea. Results suggest that in-situ soil flushing could be a successful process to remediate contaminated sites distributed in Korea.

Treatment of Naphtalenes-Contaminated Soil by Surfactant/ Coagulant (계면활성제/응집제를 이용한 나프탈렌 오염토양 처리)

  • Park, Joon-Seok;Park, Jong-Un;Shin, Chul-Ho;Park, Hee-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.2
    • /
    • pp.82-90
    • /
    • 2004
  • This study was conducted to evaluate in situ soil flushing and coagulation for naphtalenes-contaminated soil remediation. Mixed-surfactant of 1% POE12 and 1% SDS (1 : 1 by volume basis) was used as a flushing solution. When 5 pore volumes of mixed -surfactant were added to soil column, the flushing efficiencies of 2-methylnaphtalene and 1,5-dimethylnaphtalene with about 1,500 mg/kg(dry soil) were approximately 80% and 60% respectively. In adding 13 pore volumes of mixed-surfactant, the flushing efficiencies of 2-methylnaphtalene and 1,5-dimethylnaphtalene were 90% and 82%. However, considering in situ soil flushing with distilled water, about 42% and 71% were flushed for 2-methylnaphtalene and 1,5-dimethylnaphtalene by surfactant-only. For about 10,000 mg/kg(dry soil) diesel-contaminated soil, 40% and 70% of TPH were flushed-out in 5 pore volumes and 13 pore volumes addition. However, for naphtalenes in diesel TPH, 90% of flushing efficiency was discovered in adding only 5 pore volumes of flushing solution. There was not discovered significant difference among coagulation efficiencies of 6 kinds of polymers, and the coagulation efficiencies were near 50%.

  • PDF

Chemical Washing of PAH-Contaminated Soil with Cyclodextrins as a Main Surfactant: A Labscale Study (사이클로덱스트린을 이용한 PAH오염토양의 화학적 세정)

  • Sung Hyun Kwon;Daechul Cho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.4
    • /
    • pp.295-302
    • /
    • 2002
  • PAHs (polycyclic aromatic hydrocarbons) deposited in soil are one of serious problems against sustainable land use. In this paper, chemical soil flushing in a packed sandy soil matrix using a natural surfactant, $\beta$-cyclodextrin (CD) was studied via a fluorescence spectroscopy and a dye labelling. The contaminants are lipophilic ring compounds- phenanthrene and naphthalene. Sand type and flushing intensity (rate and concentration) are chosen as important investigation variables. The removal efficiencies were proportional to flow rate, concentration, temperature of the flushing solution and voidity of the sand column. Initial sorption of the surfactant onto the soil matrix was found to be a key step while flow shear was more crucial in the latter steps. The residual portion of the surfactant, which was most likely to be due to the initial sorption, would not be so influential on this type of soil washing for long times. These results will be useful in future for pilot scale in situ washing and for establishing better soil washing strategy.

  • PDF

Performance of Soil Flushing for Contaminated Soil Using Surfactant (계면활성제를 이용한 오염 토양 세정 성능 평가)

  • Lee, Chaeyoung;Jang, Yeongsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.6
    • /
    • pp.17-23
    • /
    • 2011
  • In this study, a series of experiments were carried out to remove total petroleum hydrocarbon(TPH) and toluene by soil flushing. In batch experiments, Triton X-100 and SWA 1503 showed TPH removal efficiency of 79.0% and 69.0%, respectively. Although the TPH removal efficiency increased as the surfactant was increased in the concentration range 1-11mmol/L, the optimum concentration was 1mmol/L, considering the ratio of the removal efficiency to the amount of surfactant injected. In column experiment, the optimal velocity was 0.3mL/min. The physical aquifer model(PAM) result revealed that the soil flushing removed as much as 5.5% of the toluene under 3 pore volume(PV) conditions. To improve the soil flushing efficiency, it is necessary to find optimal condition through recirculation or reuse of surfactant.

전기부상법을 이용한 토양세정 유출수 중 유수분리에 관한 연구 : 전해질에 의한 영향

  • 소정현;최상일;조장환;한상근;류두현
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.463-465
    • /
    • 2003
  • 전기분해에 의한 부상현상을 이용하여 유류로 오염된 토양 세정 후 발생되는 유출수 중 유분 등을 분리하기 위한 적정 운전조건을 찾고자 하였다. 전기분해 반응조(200 $\times$ 10 $\times$15cm)에 혼합 계면활성제 (POE5 : POE14, 1:1) 1% 용액에 디젤을 1,000mg/L 농도로 용해시켜 실험하였다. 양극에는 티나늄 코팅전극, 음극으로는 스테인레스 스틸전극을 이용하였다. 반응시간은 62분( 반응: 60분, 부상시간: 2분) 이었으며 전압은 6V였다. 전해질 첨가에 의한 영향을 알아보기 위하여 실험한 결과, 전해질을 첨가하였을 경우 첨가하지 않았을 때보다 40% 정도의 효율이 증가하였다. 적정 전해질, 주입농도 및 반응시간을 알아보기 위하여 1N NaCl과 NaOH의 농도를 변화시켜 가면서 실험하였다. NaCl의 경우 더 좋은 효율을 나타내었다. 전해질의 농도는 0.2 - 1.0% 의 농도 범위에서 NaCl와 NaOH 모두 농도에 따라 순차적으로 효율이 증가하였다. 두 전해질 모두 0.4 - 1.0% 농도 범위에서 평형에 도달하는 시간은 20분으로 나타났다.

  • PDF

Derivation of Optimum Operating Conditions for Electrical Resistance Heating to Enhance the Flushing Effect of Heavy Oil Contaminated Soil (중질유 오염토양의 세정효과를 증진시키기 위한 전기저항가열의 최적 운전조건 도출)

  • Lee, Hwan;Jung, Jaeyun;Kang, Doore;Lee, Cheolhyo
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.3
    • /
    • pp.219-229
    • /
    • 2020
  • This study evaluated the applicability of the convergence technology by deriving the optimum conditions about operating factors of electrical resistance heating to enhance the soil flushing effect on soil contaminated with bunker C oil in the coastal landfill area. As a result of the batch scale experiment, the flushing efficiency of the VG-2020 was higherthan that of the Tween-80, and the flushing efficiency increased by about 1.4 times at 60℃ compared to room temperature. As a result of the electrical resistance heating box experiment, soil temperature rose to 100℃ in about 40~80 minutes in soil with water content of 20~40%, and it was found that the heat transfer efficiency is excellent when the pipe-shaped electrode rod with STS 316 material is located in a triangular arrangement in saturated soil. In addition, it was confirmed that the interval between the electrode rods to maintain the soil temperature above 60℃ under the optimum conditions was 1.5 m, and the soil flushing box experiment accompanying electrical resistance heating showed TPH reduction efficiency of about 55% at 5 Pore Volume, and satisfied the Korean standard for the conservation of soil (less than TPH 2,000 mg/kg) at 10 Pore Volume.

A Study on the Basic Characteristics of In-situ Soil Flushing Using Surfactant (계면활성제를 이용한 원위치 토양세정 기법 적용을 위한 기초 특성 연구)

  • 최상일;소정현;조장환
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.87-91
    • /
    • 2002
  • Lab scale batch and column tests were performed to investigate the treatability of petroleum contaminated soil using the in-situ soil flushing method. The pyrex column (4.5$\times$25 cm) was used to investigate optimal washing agent, surfactant concentration, mixing ratio, and inlet velocity. The miked surfactant of $POE_{14}$ and SDS were determined as ideal systems for the batch tests. From the results of preliminary tests, mixed surfactant was found to be more harmful for microorganisms. So $POE_{5}$ and $POE_{14}$ were chosen as the surfactant system for the batch study. The washing efficiency for the diesel contaminated soil was increased until 1 %, and decreased after l %. When applied as selected mixed surfactant, the ideal mixed ratio was recognized as 1:1. Therefore we selected miked surfactant $POE_{5}$ and $POE_{14}$, surfactant concentration 1%, and mixed ratio 1:1 for the remediation of diesel contaminated soil. In column tests, the total removal efficiency was improved as the flux of washing agent was increased. At the same pore volume, small flux showed better removal efficiency.