• Title/Summary/Keyword: 토사터널

Search Result 104, Processing Time 0.03 seconds

perforation of tunnel in limestone formation (석회암층의 터널관통사례)

  • Kim, Yong-Il;Hwang, Nak-Yeon;Jeong, Du-Seok;Hong, Jong-Sang;Lee, Nae-Yong
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2007.03a
    • /
    • pp.64-80
    • /
    • 2007
  • This paper presents a case study on the excavation of a long tunnel(16.2km) named as "Sol-An tunnel", which connects between Mt. Dongbaek station and Dokye station in the Young-dong Railroad. This site is located in a complex geological region with faults, cavities and coal measures as sedimentary rocks area. It occurred geotechnical problems unexpectedly by running water when tunnelling in limestone area within those geological structures. This tunnel caused surface settlements through the decrease of ground water level and soil washed-out affecting by cavities and faults within limestone formation. This paper presents a analysis of source through a close investigation and measures. And also, does preventive measures about returns of settlements reflected by properties of limestones.

  • PDF

Development of Knowledge-based Study on Optimized NATM Lining Design System (지식기반형 NATM 라이닝 최적 설계 시스템 개발)

  • Song, Ju-Sang;Yoo, Chung-sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.251-265
    • /
    • 2018
  • This paper concerns the development of an optimized NATM secondary lining design system for a subsea tunnel. The subsea tunnel is normally laid down under the sea water and submarine ground which consists of soil or rock. The design system is the series of process which can predict lining member forces by ANN (artificial neural network system), analyze suitable section for the designated ground, construction and tunnel conditions. Finally, this lining design system aims to be connected for designing the subsea tunnel automatically. The lining member forces are predicted based on the ANN which was calculated by a FEM (finite element analysis) and it helps designers determine its lining dimension easily without any further FEM calculations.

Development of optimized TBM segmental lining design system (TBM 세그먼트 라이닝 최적 설계 시스템 개발)

  • Woo, Seungjoo;Chung, Eunmok;Yoo, Chungsik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.13-30
    • /
    • 2016
  • This paper concerns the development of an optimized TBM segmental lining design system for a subsea tunnel. The subsea tunnel is normally laid down under the sea water and submarine ground which consists of soil or rock. The design system is the series of process which can predict segmental lining member forces by ANN (artificial neural network system), analyze suitable section for the designated ground, construction and tunnel conditions. Finally, this lining design system aims to be connected with a BIM system for designing the subsea tunnel automatically. The lining member forces are predicted based on the ANN which was calculated by a FEM (finite element analysis) and it helps designers determine its segmental lining dimension easily without any further FE calculations.

Shaking table test for analysis of seismic performance of cut and cover tunnel using EPS block as backfill material (개착식 터널의 뒤채움재로 EPS블럭의 내진 성능 평가를 위한 진동대 시험)

  • Kim, Nag-Young;Lee, Yong-Jun;Lee, Seung-Ho;Chung, Hyung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.4
    • /
    • pp.333-342
    • /
    • 2002
  • World widely, the occurrences of earthquakes have been increased recently. Speculating from cases of earthquakes in the world, it is reported that damages have been made underground structures like cut-and-cover tunnels, especially on the upper of tunnel with a shallow depth and the backfilled area adjacently by earthquakes. Earthquakes have a tendency to increase recently in Korea but it is deficient in seismic design criteria. In this study, Shaking table test on both soil and EPS blocks was performed to analyze the efficiency of the seismic performance of the cut-and-cover tunnels according to characteristic of backfill materials and embanking material. It turned out to be effective in improving the seismic performance according to analysis of strain and bending stress of tunnel by earthquakes.

  • PDF

Geotechnical investigation on causes and mitigation of ground subsidence during underground structure construction (터널 및 지중매설물 시공에 따른 지반함몰 발생 원인 및 대책에 대한 지반공학적 조사 연구)

  • Choi, Shin-Kyu;Back, Seung-Hun;An, Jun-Beom;Kwon, Tae-Hyuk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.143-154
    • /
    • 2016
  • This study investigated the occurrences, causes, and mitigation of the recent ground subsidence and underground cavity generation events in Korea. Two main causes of ground subsidence are (1) the soil erosion by seepage during tunneling and earth excavation and (2) the damage of underground pipes. The main cause of the soil erosion during tunneling was the uncontrolled groundwater flow. Especially, when excavating soft grounds using a tunnel boring machine (TBM), the ground near TBM operation halt points were found to be the most vulnerable to failure. The damage of underground pipes was mainly caused by poor construction, material deterioration, and differential settlement in soft soils. The ground subsidence during tunneling and earth excavation can be managed by monitoring the outflow of groundwater and eroded soils in construction sites. It is expected that the ground subsidence by the underground pipe damage can be managed or mitigated by life cycle analysis and maintenance of the buried pipes, and by controlling the earth pressure distribution or increasing the bearing capacity at the upper ground of the buried pipes.

Evaluation of Tunnel Face Stability with the Consideration of Seepage Forces (침투력을 고려한 토사터널 막장의 안정성 평가방법에 대한 고찰)

  • 남석우;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.193-200
    • /
    • 1999
  • Since Broms and Bennermark(1967) suggested the face stability criterion based on laboratory extrusion tests and field observations, the face stability of a tunnel driven in cohesive material has been studied by several authors. And recently, more general solution for the tunnel front is given by Leca and Panet(1988). They adopted a limit state design concept to evaluate the face stability of a shallow tunnel driven into cohesionless material and showed that the calculated upper bound solution represented the actual behavior reasonably well. In this study, two factors are simultaneously considered for assessing tunnel face stability: One is the effective stress acting on the tunnel front calculated by upper bound solution; and the other is the seepage force calculated by numerical analysis under the condition of steady state ground water flow. The model tests were performed to evaluate the seepage force acting on the tunnel front and these results were compared with results of numerical analysis. Consequently, the methodology to evaluate the stability of a tunnel face including limit analysis and seepage analysis is suggested under the condition of steady state ground water flow.

  • PDF

A Case Study on Elephant Foot Method for Tunnelling in the Soft Ground (토사터널에서의 각부보강공법 적용성 연구)

  • Park, Chi-Myeon;Lee, Ho;Park, Jae-Hoon;Yoon, Chang-Ki;Hwang, Je-Don
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.863-874
    • /
    • 2009
  • The engineering characteristics and the reinforcement effect of the elephant foot method were discussed with parametric study. The elephant foot method is adopted to support the loads transferred from tunnel crown and improve bearing capacity of elephant foot in poor ground condition. The evaluation of reinforcement effect, which has the mechanical relationship between ground condition, footing size and reinforcement system, was carried out through the previous research and numerical analysis. In addition, the simple design chart was proposed to estimate the applicability of the elephant foot reinforcement method. It will be practical for the engineer to determine the optimum reinforcement method for safe tunnelling in soft ground condition.

  • PDF

The Study on the Behavior of Closed-Faced Shield Tunneling by Two Dimensional Elasto-Plastic Analysis (2차원 탄소성해석에 의한 밀폐형 실드터널의 거동에 관한 연구)

  • 진치섭;이홍주;한상중
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.199-207
    • /
    • 1996
  • In the past decade soft clay shield tunneling technology have been improved to permit continuous support to the face of a tunnel. These advanced shield can be operated such that an initial heaving is created, this helps to decrease the inward soil movement into the tail void. In this paper, the measurement of slurry shield and EPB shield were used and two dimensional elasto-plastic programs EPSHILD developed for shield tunnel analysis were approved. The excavation steps corresponding with construction stages were settled and heaving load, load factors were considered. This study is based on the instantaneous settlement which is occured in the process of shield construction but not the secondary settlement by consolidation.

  • PDF

Analysis of Particle Mobilization and Impact on Filter Performance in Drainage Tunnels (토립자 유동이 터널 배수재의 폐색에 미치는 영향 연구)

  • Park, Kwang-Joon;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.169-176
    • /
    • 1999
  • 본 논문은 지하수 흐름하에서의 풍화 잔류토의 세립자 유동특성을 파악하기 위한 수치모델을 개발하고, 실내에서 실시한 수리 모형실험을 통하여 수치모델의 적합성을 규명하였다. 한국의 풍화 잔류토는 점토와 모래의 중간 상태의 특성을 보이는 관계로 기존의 토립자 유동모델중 점토 또는 모래에 적합한 모델에 의해서는 정확한 유동특성의 파악에 한계가 있었다. 따라서, 본 연구에서는 한국의 풍화 잔류토에 적합한 세립자 유동모델을 제시함으로써 풍화 잔류토를 대상으로 시공되는 굴토공사, 댐 축조공사, 그리고 터널공사시 지하수 유입에 따른 세립토사의 유실특성을 이론적으로 규명하였고, 현장에서 배수재로 광범위하게 쓰이고 있는 토목섬유인 부직포의 투수 및 배수특성을 검토하였다

  • PDF

A study on the characteristics of tunnel deformation and support system according to tunnel portal reinforcement method (터널 갱구부 보강방법에 따른 터널 변형 및 지보재 응력특성에 관한 연구)

  • Moon, Kyoung-Sun;Seo, Yoon-Sic;Kang, Si-On;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.625-639
    • /
    • 2018
  • This study is about the reinforcing type of reinforcement method which is reinforced in tunnel portal of tunnel with bad ground condition. Generally, it is known that the horizontal reinforcement method is more effective than the conventional reinforcement method. However, as a limitation of the tunnel construction technology, it is being constructed by the superposition reinforcement method. In recent years, high-strength large-diameter steel pipes and horizontally oriented longitudes (L = 30.0~50.0 m) construction technology have been developed. Therefore, it is required to study reinforcement method of tunnel portal reinforcement method. Therefore, 3-D numerical analysis (Midas GTS NX 3D) was performed by setting the reinforcement method (No reinforcement type, overlap reinforcement type and horizontal reinforcement type) and ground condition as parameters. As a result, it was considered that the reinforcement effect was the largest as the horizontal reinforcement type of the reinforcement method was the smallest in the displacement and the support material stress. Based on the results of the numerical analysis, horizontal steel pipe grouting was applied to the actual tunnel site. The displacement of the tunnel portal and the stress of the support material occurred within the allowable values and were considered to ensure sufficient stability.