• Title/Summary/Keyword: 토목-BIM

Search Result 137, Processing Time 0.026 seconds

Development of 4D System Linking AR and 3D Printing Objects for Construction Porject (AR과 3D 프린팅 객체를 연계한 건설공사 4D 시스템 구성 연구)

  • Park, Sang Mi;Kim, Hyeon Seung;Moon, Hyoun Seok;Kang, Leen Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.181-189
    • /
    • 2021
  • In order to increase the practical usability of the virtual reality(VR)-based BIM object in the construction site, the difference between the virtual image and the real image should be resolved, and when it is applied to the construction schedule management function, it is necessary to reduce the image gap between the virtual completion and the actual completion. In this study, in order to solve this problem, a prototype of 4D model is developed in which augmented reality (AR) and 3D printing technologies are linked, and the practical usability of a 4D model linked with two technologies is verified. When a schedule simulation is implemented by combining a three-dimensional output and an AR object, it is possible to provide more intuitive information as a tangible image-based schedule information when compared to a simple VR-based 4D model. In this study, a methodology and system development of an AR implementation system in which subsequent activities are simulated in 4D model using markers on 3D printing outputs are attempted.

Assessment of over / under-break of tunnel utilizing BIM and 3D laser scanner (3차원 레이저 스캐너 및 BIM을 활용한 터널 과대.과소 굴착 평가)

  • Park, Jeong-Jun;Shin, Jae-Chou;Hwang, Ju-Hwan;Lee, Kang-Hyun;Seo, Hyung-Joon;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.437-451
    • /
    • 2012
  • Application of 3D laser scanner to civil engineering is widely studied in various fields such as tunnel, bridge, calculation of earth volume, construction measurement, observation of rock joint, etc. Some studies on utilization of the 3D laser scanner for calculating the over-break and/or under-break of tunnels have also been carried out. However, in the previous research, the scanning data were usually compared with the 2D CAD blueprint results; although the shape of tunnel structure is relatively simple, for precise calculation of the over-break and/or under-break of tunnels, three-dimensional analysis based on BIM is needed. Therefore, in this paper, a new program that calculates the over-break and/or under-break of tunnels using the 3D laser scanner and the BIM is developed; moreover the effective and rapid process of data treatment is proposed. The accuracy of the developed program was verified by applying the new system to a real tunnels construction field.

Development of A Quantitative Risk Assessment Model by BIM-based Risk Factor Extraction - Focusing on Falling Accidents - (BIM 기반 위험요소 도출을 통한 정량적 위험성 평가 모델 개발 - 떨어짐 사고를 중심으로 -)

  • Go, Huijea;Hyun, Jihun;Lee, Juhee;Ahn, Joseph
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.4
    • /
    • pp.15-25
    • /
    • 2022
  • As the incidence and mortality of serious disasters in the construction industry are the highest, various efforts are being made in Korea to reduce them. Among them, risk assessment is used as data for disaster reduction measures and evaluation of risk factors at the construction stage. However, the existing risk assessment involves the subjectivity of the performer and is vulnerable to the domestic construction site. This study established a DB classification system for risk assessment with the aim of early identification and pre-removal of risks by quantitatively deriving risk factors using BIM in the risk assessment field and presents a methodology for risk assessment using BIM. Through this, prior removal of risks increases the safety of construction workers and reduces additional costs in the field of safety management. In addition, since it can be applied to new construction methods, it improves the understanding of project participants and becomes a tool for communication. This study proposes a framework for deriving quantitative risks based on BIM, and will be used as a base technology in the field of risk assessment using BIM in the future.

A Study on the Improvement of 3D Slope Modeling for BIM Designing Site Construction (택지조성공사 BIM을 위한 비탈면 3차원 모델링 효율화 방안에 관한 연구)

  • Kwon, Yongkyu;Ha, Dahyun;Kim, Jeonghwan;Seo, Joonwon;Shim, Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.4
    • /
    • pp.29-40
    • /
    • 2021
  • Recently, interest in Building Information Modeling (BIM) has increased globally, and 3D modeling is a start for the application of BIM at construction sites. However, while many studies have been conducted on the efficiency of 3D modeling focused on civil facilities, there is a lack of research on the earthwork BIM. In particular, since 3D slope often has complex shapes depending on the ground models, the efficiency method for 3D slope are needed. This study analyzed the interfaces and procedures of other software to find out what functions users need. Then the functions to enter intervals between 3D faces, select multiple ground models, and improve the interface are reflected on the developed system and is able to efficiently perform modeling with only five steps, and reduce the number of clicks and inputs. As a result of conducting the test to verify the efficiency, using the developed system made skilled users complete modeling at least 1.8 times faster and unskilled people at least 2.4 times faster than using other software. This is expected to perform 3D slope modeling more efficiently, as well as to contribute to the activation of future BIM adoption for housing construction projects.

CNN deep learning based estimation of damage locations of a PSC bridge using static strain data (정적 변형률 데이터를 사용한 CNN 딥러닝 기반 PSC 교량 손상위치 추정)

  • Han, Man-Seok;Shin, Soo-Bong;An, Hyo-Joon
    • Journal of KIBIM
    • /
    • v.10 no.2
    • /
    • pp.21-28
    • /
    • 2020
  • As the number of aging bridges increases, more studies are being conducted on developing effective and reliable methods for the assessment and maintenance of bridges. With the advancement in new sensing systems and data learning techniques through AI technology, there is growing interests in how to evaluate bridges using these advanced techniques. This paper presents a CNN(Convolution Neural Network) deep learning based technique for evaluating the damage existence and for estimating the damage location in PSC bridges using static strain data. Simulation studies were conducted to investigate the proposed method with error analysis. Damage was simulated as the reduction in the stiffness of a finite element. A data learning model was constructed by applying the CNN technique as a type of deep learning. The damage status and its location were estimated using data set built through simulation. It was assumed that the strain gauges were installed in a regular interval under the PSC bridge girders. In order to increase the accuracy in evaluating damage, the squared error between the intact and measured strains are computed and applied for training the data model. Considering the damage occurring near the supports, the results of error analysis were compared according to whether strain data near the supports were included.

Landscape Object Classification and Attribute Information System for Standardizing Landscape BIM Library (조경 BIM 라이브러리 표준화를 위한 조경객체 및 속성정보 분류체계)

  • Kim, Bok-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.103-119
    • /
    • 2023
  • Since the Korean government has decided to apply the policy of BIM (Building Information Modeling) to the entire construction industry, it has experienced a positive trend in adoption and utilization. BIM can reduce workloads by building model objects into libraries that conform to standards and enable consistent quality, data integrity, and compatibility. In the domestic architecture, civil engineering, and the overseas landscape architecture sectors, many BIM library standardization studies have been conducted, and guidelines have been established based on them. Currently, basic research and attempts to introduce BIM are being made in Korean landscape architecture field, but the diffusion has been delayed due to difficulties in application. This can be addressed by enhancing the efficiency of BIM work using standardized libraries. Therefore, this study aims to provide a starting point for discussions and present a classification system for objects and attribute information that can be referred to when creating landscape libraries in practice. The standardization of landscape BIM library was explored from two directions: object classification and attribute information items. First, the Korean construction information classification system, product inventory classification system, landscape design and construction standards, and BIM object classification of the NLA (Norwegian Association of Landscape Architects) were referred to classify landscape objects. As a result, the objects were divided into 12 subcategories, including 'trees', 'shrubs', 'ground cover and others', 'outdoor installation', 'outdoor lighting facility', 'stairs and ramp', 'outdoor wall', 'outdoor structure', 'pavement', 'curb', 'irrigation', and 'drainage' under five major categories: 'landscape plant', 'landscape facility', 'landscape structure', 'landscape pavement', and 'irrigation and drainage'. Next, the attribute information for the objects was extracted and structured. To do this, the common attribute information items of the KBIMS (Korean BIM Standard) were included, and the object attribute information items that vary according to the type of objects were included by referring to the PDT (Product Data Template) of the LI (UK Landscape Institute). As a result, the common attributes included information on 'identification', 'distribution', 'classification', and 'manufacture and supply' information, while the object attributes included information on 'naming', 'specifications', 'installation or construction', 'performance', 'sustainability', and 'operations and maintenance'. The significance of this study lies in establishing the foundation for the introduction of landscape BIM through the standardization of library objects, which will enhance the efficiency of modeling tasks and improve the data consistency of BIM models across various disciplines in the construction industry.

Parametric Modeling Method for 3D Assembly Design of Parts Composing Superstructure Module on Modular Steel Bridge (모듈러 강교량 상부모듈 구성파트의 3차원 조립설계를 위한 파라메트릭 모델링 방법)

  • Lee, Sang Ho;An, Hyun Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.35-46
    • /
    • 2013
  • A parametric modeling method, one of the core technology of BIM (Building Information Modeling), is proposed for efficient 3D assembly design among components of a superstructure module of modular steel bridge. Assembly system is classified into 3 levels as LoD (Level of Details) for 3D assembly design of the parts. Components forming 3D shape of the parts are identified and defined as parameters, variables depending on parameters, or constants independent of the parameters. Then, spatial assembly rules among the parts are defined according to the assembly system. Positional relations among the identified shape components are defined for mating spatial position and geometrical relations are defined for constraining degree of freedom on X, Y, and Z axis. Finally, a standardized template is designed by applying the rules to 3D based assembly design for the parts of the superstructure module. In addition, applicability of the parametric modeling method is demonstrated by testing the shape variation of the superstructure module according to changing the defined parameters.

A Study on 3D Indoor mapping for as-built BIM creation by using Graph-based SLAM (준공 BIM 구축을 위한 Graph-based SLAM 기반의 실내공간 3차원 지도화 연구)

  • Jung, Jaehoon;Yoon, Sanghyun;Cyrill, Stachniss;Heo, Joon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.3
    • /
    • pp.32-42
    • /
    • 2016
  • In Korea, the absence of BIM use in existing civil structures and buildings is driving a demand for as-built BIM. As-built BIMs are often created using laser scanners that provide dense 3D point cloud data. Conventional static laser scanning approaches often suffer from limitations in their operability due to the difficulties in moving the equipment, the selection of scanning location, and the requirement of placing targets or extracting tie points for registration of each scanned point cloud. This paper aims at reducing the manual effort using a kinematic 3D laser scanning system based on graph-based simultaneous localization and mapping (SLAM) for continuous indoor mapping. The robotic platform carries three 2D laser scanners: the front scanner is mounted horizontally to compute the robot's trajectory and to build the SLAM graph; the other two scanners are mounted vertically to scan the profiles of surrounding environments. To reduce the accumulated error in the trajectory of the platform through loop closures, the graph-based SLAM system incorporates AdaBoost loop closure approach, which is particularly suitable for the developed multi-scanner system providing more features than the single-scanner system for training. We implemented the proposed method and evaluated it in two indoor test sites. Our experimental results show that the false positive rate was reduced by 13.6% and 7.9% for the two dataset. Finally, the 2D and 3D mapping results of the two test sites confirmed the effectiveness of the proposed graph-based SLAM.

IFC Property Set-based Approach for Generating Semantic Information of Steel Box Girder Bridge Components (IFC Property Set을 활용한 강박스교 구성요소의 의미정보 생성)

  • Lee, Sang-Ho;Park, Sang Il;Park, Kun-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.687-697
    • /
    • 2014
  • This study ranges from planning phase to the detailed design phase of steel box girder bridge and proposes ways to generate semantic information of components through Industry Foundation Classes (IFC), a data model for Building Information Modeling (BIM). The classification of components of steel box girder bridge was performed to define information items required for identifying semantic information based on IFC, and spatial information items based on topology and physical information items based on functions of components were classified to create additional properties that does not support IFC by applying user-defined property set within the IFC framework. Steel box girder bridge information model based on IFC was implemented through BIM software and semantic information input interface, which was developed in this study to examine the effectiveness of the additionally created user-defined property. Furthermore, the quantity take-off of components was performed through information model of steel box girder bridge, and the applicability of the proposed method was tested by comparing the quantity take-off based on design document with the result.

Research on Bridge Maintenance Methods Using BIM Model and Augmented Reality (BIM 모델과 증강현실을 활용한 교량 유지관리방안 연구)

  • Choi, Woonggyu;Pa Pa Win Aung;Sanyukta Arvikar;Cha, Gichun;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Bridges, which are construction structures, have increased from 584 to 38,405 since the 1970s. However, as the number of bridges increases, the number of bridges with a service life of more than 30 years increases to 21,737 (71%) by 2030, resulting in fatal accidents due to basic human resource maintenance of facilities. Accordingly, the importance of bridge safety inspection and maintenance measures is increasing, and the need for decision-making support for supervisors who manage multiple bridges is also required. Currently, the safety inspection and maintenance method of bridges is to write down damage, condition, location, and specifications on the exterior survey map by hand or to record them by taking pictures with a camera. However, errors in notation of damage or defects or mistakes by supervisors are possible, typos, etc. may reduce the reliability of the overall safety inspection and diagnosis. To improve this, this study visualizes damage data recorded in the BIM model in an AR environment and proposes a maintenance plan for bridges with a small number of people through maintenance decision-making support for supervisors.