• Title/Summary/Keyword: 텍스트 연구

Search Result 3,471, Processing Time 0.034 seconds

Knowledge Structure Analysis on Defense Research Using Text Network Analysis (텍스트 네트워크분석을 활용한 국방분야 연구논문 지식구조 분석)

  • Lee, Yong-Kyu;Yoon, Soung-woong;Lee, Sang-Hoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.526-529
    • /
    • 2018
  • 본 연구에서는 텍스트 네트워크분석을 활용하여 국방분야 연구의 핵심 주제어와 연구주제를 분석하고 이를 통해 전체 지식구조를 파악하고자 하였다. 이를 위해 2010년부터 2017년까지의 국방대학교 학위과정 논문을 대상으로 국방분야 연구현황을 진단하고 지식구조를 구성하였다. 8년간 누적된 논문 710건의 초록을 분석하여 총 6,883개의 단어를 추출한 후, 단어의 논문 등장 빈도수와 단어간 링크수를 파레토 법칙에 따라 상위 20%의 기준으로 총 270개의 단어로 추출하였고, 컴포넌트 분석을 통해 최종 170개의 핵심 주제어를 도출하였다. 이 핵심 주제어를 통해 중심성 분석과 응집구조를 분석하여, 국방분야에 대한 총 6개의 지식구조 그룹을 도출하였다.

  • PDF

Research Paper Classification Scheme based on Word Embedding (워드 임베딩 기반 연구 논문 분류 기법)

  • Dipto, Biswas;Gil, Joon-Min
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.494-497
    • /
    • 2021
  • 텍스트 분류(text classification)는 원시 텍스트 데이터로부터 정보를 추출할 수 있는 기술에 기반하여 많은 양의 텍스트 데이터를 관심 영역으로 분류하는 것으로 최근에 각광을 받고 있다. 본 논문에서는 워드 임베딩(word embedding) 기법을 이용하여 특정 분야의 연구 논문을 분류하고 추천하는 기법을 제안한다. 워드 임베딩으로 CBOW(Continuous Bag-of-Word)와 Sg(Skip-gram)를 연구 논문의 분류에 적용하고 기존 방식인 TF-IDF(Term Frequency-Inverse Document Frequency)와 성능을 비교 분석한다. 성능 평가 결과는 워드 임베딩에 기반한 연구 논문 분류 기법이 TF-IDF에 기반한 연구 논문 분류 기법보다 좋은 성능을 가진다는 것을 나타낸다.

English Bible Text Visualization Using Word Clouds and Dynamic Graphics Technology (단어 구름과 동적 그래픽스 기법을 이용한 영어성경 텍스트 시각화)

  • Jang, Dae-Heung
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.3
    • /
    • pp.373-386
    • /
    • 2014
  • A word cloud is a visualization of word frequency in a given text. The importance of each word is shown in font size or color. This plot is useful for quickly perceiving the most prominent words and for locating a word alphabetically to determine its relative prominence. With dynamic graphics, we can find the changing pattern of prominent words and their frequencies according to the changing selection of chapters in a given text. We can define the word frequency matrix. In this matrix, rows are chapters in text and columns are ranks corresponding to word frequency about the words in the text. We can draw the word frequency matrix plot with this matrix. Dynamic graphic can indicate the changing pattern of the word frequency matrix according to the changing selection of the range of ranks of words. We execute an English Bible text visualization using word clouds and dynamic graphics technology.

The Characteristics of Literary therapy through a contrast with Literature education (문학교육과의 대비를 통해 본 문학치료의 특성)

  • Cho, Eun-sang
    • Journal of Korean Classical Literature and Education
    • /
    • no.39
    • /
    • pp.5-39
    • /
    • 2018
  • This paper aims to identify the characteristics of literary therapy in relation to literature education. It also intends to clarify its distinctiveness. Literary therapy is not to teach literature. It does not deliver knowledge on agreed analyses, backgrounds and the nature of genres. Literary therapy encourages participants to fully appreciate one's thought and emotions and express them. The end goal is self-knowledge rather than the understanding of texts. Literary therapy focuses on self-knowledge through literatures as opposed to literature education which aims to encourage understandings of literature texts. In literary therapy, literature is media for personal growth facilitating self-expansion. Literature works enable participants to view oneself objectively by the means of one's responses to literature works. Literary therapy has more permissive viewpoints on recipients' response to literature texts than literature education. In addition, the subject of literary therapy is more unique and individualistic.

Multi-Dimensional Keyword Search and Analysis of Hotel Review Data Using Multi-Dimensional Text Cubes (다차원 텍스트 큐브를 이용한 호텔 리뷰 데이터의 다차원 키워드 검색 및 분석)

  • Kim, Namsoo;Lee, Suan;Jo, Sunhwa;Kim, Jinho
    • Journal of Information Technology and Architecture
    • /
    • v.11 no.1
    • /
    • pp.63-73
    • /
    • 2014
  • As the advance of WWW, unstructured data including texts are taking users' interests more and more. These unstructured data created by WWW users represent users' subjective opinions thus we can get very useful information such as users' personal tastes or perspectives from them if we analyze appropriately. In this paper, we provide various analysis efficiently for unstructured text documents by taking advantage of OLAP (On-Line Analytical Processing) multidimensional cube technology. OLAP cubes have been widely used for the multidimensional analysis for structured data such as simple alphabetic and numberic data but they didn't have used for unstructured data consisting of long texts. In order to provide multidimensional analysis for unstructured text data, however, Text Cube model has been proposed precently. It incorporates term frequency and inverted index as measurements to search and analyze text databases which play key roles in information retrieval. The primary goal of this paper is to apply this text cube model to a real data set from in an Internet site sharing hotel information and to provide multidimensional analysis for users' reviews on hotels written in texts. To achieve this goal, we first build text cubes for the hotel review data. By using the text cubes, we design and implement the system which provides multidimensional keyword search features to search and to analyze review texts on various dimensions. This system will be able to help users to get valuable guest-subjective summary information easily. Furthermore, this paper evaluats the proposed systems through various experiments and it reveals the effectiveness of the system.

Korean Text Automatic Summarization using Semantically Expanded Sentence Similarity (의미적으로 확장된 문장 간 유사도를 이용한 한국어 텍스트 자동 요약)

  • Kim, Heechan;Lee, Soowon
    • Annual Conference of KIPS
    • /
    • 2014.11a
    • /
    • pp.841-844
    • /
    • 2014
  • 텍스트 자동 요약은 수많은 텍스트 데이터를 처리함에 있어 중요한 연구 분야이다. 이중 추출요약은 현재 가장 많이 연구가 되고 있는 자동 요약 분야이다. 본 논문은 추출 요약의 선두 연구인 TextRank는 문장 간 유사도를 계산할 때 문장 내 단어 간의 의미적 유사성을 충분히 고려하지 못하였다. 본 연구에서는 의미적 유사성을 고려한 새로운 단어 간 유사도 측정 방법을 제안한다. 추출된 문장 간 유사도는 그래프로 표현되며, TextRank의 랭킹 알고리즘과 동일한 랭킹 알고리즘을 사용하여 실험적으로 평가하였다. 그 결과 문장 간 유사성을 고려할 때 단어의 의미적 요소를 충분히 고려하여 정보의 유실을 최소화하여야 한다는 것을 실험 결과로써 확인할 수 있었다.

A Study on Automatic Data Tagging for Text-based Training Data Construction (텍스트 기반의 훈련 데이터 구축을 위한 자동 데이터 태깅 작업에 대한 연구)

  • Kim, NaYun;So, Hyeryung;Park, Joonho
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.1008-1009
    • /
    • 2020
  • 텍스트 기반의 훈련 데이터는 데이터를 수집한 이후에 각 문자별로 태깅 작업이 필요하다. 말뭉치(Corpus)는 언어학에서 주로 이루고 있는 텍스트 집합이다. 말뭉치는 각 단어의 품사 표기에 대한 정보가 태그 형태로 되어 있다. 본 연구에서는 한국어 기반의 태깅 작업을 연구했으며, 기본 한국어 말뭉치가 아닌 기업이나 연구 기관에서 데이터를 수집하여 말뭉치나 별도 학습 데이터를 구축하기 위한 자동 태깅 방법에 대해 알아본다.

Sentimental Analysis Research Trends (감성분석 연구 동향)

  • Lee, Jung-Hoon
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.358-361
    • /
    • 2018
  • 비정형 데이터 증가로 텍스트 마이닝을 사용해 데이터를 분석하는 연구가 주목받고 있다. 감성분석은 단어와 문맥을 분석하여 텍스트의 감정을 파악하는 기술이다. 본 논문에서는 감성분석 연구 동향, 적용분야, 방법론에 관해 분석하고 기술하려 한다. 감성분석은 2001년 채팅의 감정을 분석하면서 시작되었고, 2008년부터 본격적으로 연구가 진행되었다. 감성분석은 SNS, 상품 후기, 영화평, 뉴스 기사 등 다양한 데이터에 적용되고 있으며, 사회이슈 찬반 분석과 장소 선호도 분석 등 다양한 연구에서 사용되었다. 감성분석 방법은 감성사전을 이용하는 방식과 기계학습을 사용하는 방식으로 나누어지며 분석 방법을 발전시키기 위한 연구가 진행되고 있다.

Examining the Intellectual Structure of Housing Studies in Korea with Text Mining and Factor Analysis (저자 프로파일링과 요인분석을 이용한 국내 주거학 분야의 지적 구조 분석)

  • Lee, Jae-Yun;Kim, Hee-Jeon;Ryoo, Jong-Duk
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.44 no.2
    • /
    • pp.285-308
    • /
    • 2010
  • This study analyzes the intellectual structure in domestic research of the Housing field, by utilizing text mining technique. Unlike the existing research that mainly uses text clustering in statistical analyses to identify subject specialties, core authors, and relationships between research areas, this study applied author profiling and factor analysis. To supplement the analysis of intellectual structure generated by text mining, and to perform evaluation on intellectual structure itself, two professionals in the housing field were interviewed. The intellectual structure, generated through text mining, was evaluated and showed its division of valid research areas that is slightly different from the traditional intellectual structure in the housing field.

Studies on the linguistic properties of the IT-People documents for an efficient Information Retrieval (IT 인물 관련 텍스트 정보의 효율적인 검색을 위한 Sub-language의 속성 연구)

  • Koh, Seung-Hui;Kim, So-Yeon;Cheon, Seung-Mi;Nam, Jee-Sun;Kim, Kweon-Yang;Park, Se-Young;Berlocher, Ivan
    • Annual Conference on Human and Language Technology
    • /
    • 2007.10a
    • /
    • pp.241-249
    • /
    • 2007
  • 본 연구는 IT 인물 관련 텍스트 정보의 효율적인 검색을 위하여 문서 내에서 인물과 관련된 정보를 담고 있는 문장들이 어떠한 특징을 가지고 실현되는가를 살펴보고 언어적 속성을 어떻게 구조화하고 형식화할 것인가를 논의하는 것을 목적으로 한다. 언어적 속성 분석을 위해서 전자신문 내에서 인물 관련 코퍼스를 수집하고 이들의 분석을 통해 다음과 같이 문제가 되는 특징들을 확인하였다. 즉 외래어 음차 표기문제, 복합명사 및 명사구 그리고 서술 명사적 표현의 문제 등으로 요약된다. IT라는 특정 영역에 대해 텍스트 내에서의 어휘-통사적 패턴을 분석하고 언어적 특징에 대한 효율적 기술을 위해서는 LGG 부분 문법 그래프 모델을 활용하도록 한다. 본 연구는 특정 영역인 IT 관련 문서에서 자연언어 텍스트를 대상으로 정보 검색할 때 문제가 되는 다양한 언어학적 현상들을 다루며, 향후보다 확장된 영역에서의 효율적 언어 처리에 대한 방법론적 대안을 제시할 수 있을 것으로 기대된다.

  • PDF