• Title/Summary/Keyword: 텍스트초록

Search Result 79, Processing Time 0.02 seconds

An Experimental Study on the Effectiveness of Storyboard Surrogates in the Meanings Extraction of Digital Videos (비디오자료의 의미추출을 위한 영상초록의 효용성에 관한 실험적 연구)

  • Kim, Hyun-Hee
    • Journal of the Korean Society for information Management
    • /
    • v.24 no.4
    • /
    • pp.53-72
    • /
    • 2007
  • This study is designed to assess whether storyboard surrogates are useful enough to be utilized for indexing sources as well as for metadata elements using 12 sample videos and 14 participants. Study shows that first, the match rates of index terms and summaries are significantly different according to video types, which means storyboard surrogates are especially useful for the type of videos of conveying their meanings mainly through images. Second, participants could assign subject keywords and summaries to digital video, sacrificing a little loss of full video clips' match rates. Moreover, the match rate of index terms (0.45) is higher than that of summaries (0.40). This means storyboard surrogates could be more useful for indexing videos rather than summarizing them. The study suggests that 1)storyboard surrogates can be used as sources for indexing and abstracting digital videos; 2) using storyboard surrogates along with other metadata elements (e.g., text-based abstracts) can be more useful for users' relevance judgement; and 3)storyboard surrogates can be utilized as match sources of image-based queries. Finally, in order to improve storyboard surrogates quality, this study proposes future studies: constructing key frame extraction algorithms and designing key frame arrangement models.

A Study on the Knowledge-Based System for Automaic Abstracting (자동 초록을 위한 지식 기반 시스템 설계에 관한 연구)

  • 최인숙
    • Journal of the Korean Society for information Management
    • /
    • v.6 no.1
    • /
    • pp.93-117
    • /
    • 1989
  • The objective of this study is to design an automatic abstracting system through the analysis of natural language texts. For this purpose a knowledge-based system operating on the basis of domain knowledge was developed. The procedure of generating an abstract consists of three steps: (1) A knowledge-base containing domain knowledge necessary to understand a text is constructed using frame and semantic network structures,and preliminary abstracts are prepared for various cases. (2) Input text is analysed on the basis of domain knowledge in order to extract information filling slots of the abstract with. (3) A Preliminary abstract corresponding to the input text is called and filled with the information, completing the abstract.

  • PDF

Learning-based Automatic Keyphrase Indexing from Korean Scientific LIS Articles (자동색인을 위한 학습기반 주요 단어(핵심어) 추출에 관한 연구)

  • Kim, Hea-Jin;Jeoung, Yoo-Kyung
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2017.08a
    • /
    • pp.15-18
    • /
    • 2017
  • 학술 데이터베이스를 통해 방대한 양의 텍스트 데이터에 대한 접근이 가능해지면서, 많은 데이터로부터 중요한 정보를 자동으로 추출하는 것에 대한 필요성 또한 증가하였다. 특히, 텍스트 데이터로부터 중요한 단어나 단어구를 선별하여 자동으로 추출하는 기법은 자료의 효과적인 관리와 정보검색 등 다양한 응용분야에 적용될 수 있는 핵심적인 기술임에도, 한글 텍스트를 대상으로 한 연구는 많이 이루어지지 않고 있다. 기존의 한글 텍스트를 대상으로 한 핵심어 또는 핵심어구 추출 연구들은 단어의 빈도나 동시출현 빈도, 이를 변형한 단어 가중치 등에 근거하여 핵심어(구)를 식별하는 수준에 그쳐있다. 이에 본 연구는 한글 학술논문의 초록으로부터 추출한 다양한 자질 요소들을 학습하여 핵심어(구)를 추출하는 모델을 제안하였고 그 성능을 평가하였다.

  • PDF

Analysis of English abstracts in Journal of the Korean Data & Information Science Society using topic models and social network analysis (토픽 모형 및 사회연결망 분석을 이용한 한국데이터정보과학회지 영문초록 분석)

  • Kim, Gyuha;Park, Cheolyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.151-159
    • /
    • 2015
  • This article analyzes English abstracts of the articles published in Journal of the Korean Data & Information Science Society using text mining techniques. At first, term-document matrices are formed by various methods and then visualized by social network analysis. LDA (latent Dirichlet allocation) and CTM (correlated topic model) are also employed in order to extract topics from the abstracts. Performances of the topic models are compared via entropy for several numbers of topics and weighting methods to form term-document matrices.

Knowledge Structure Analysis on Defense Research Using Text Network Analysis (텍스트 네트워크분석을 활용한 국방분야 연구논문 지식구조 분석)

  • Lee, Yong-Kyu;Yoon, Soung-woong;Lee, Sang-Hoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.526-529
    • /
    • 2018
  • 본 연구에서는 텍스트 네트워크분석을 활용하여 국방분야 연구의 핵심 주제어와 연구주제를 분석하고 이를 통해 전체 지식구조를 파악하고자 하였다. 이를 위해 2010년부터 2017년까지의 국방대학교 학위과정 논문을 대상으로 국방분야 연구현황을 진단하고 지식구조를 구성하였다. 8년간 누적된 논문 710건의 초록을 분석하여 총 6,883개의 단어를 추출한 후, 단어의 논문 등장 빈도수와 단어간 링크수를 파레토 법칙에 따라 상위 20%의 기준으로 총 270개의 단어로 추출하였고, 컴포넌트 분석을 통해 최종 170개의 핵심 주제어를 도출하였다. 이 핵심 주제어를 통해 중심성 분석과 응집구조를 분석하여, 국방분야에 대한 총 6개의 지식구조 그룹을 도출하였다.

  • PDF

Entitymetrics Analysis of the Research Works of Dong-ju Yun using Textmining (텍스트마이닝을 이용한 윤동주 연구의 개체계량학적 분석)

  • Park, Jinkyeun;Kim, Taekyoun;Song, Min
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.28 no.1
    • /
    • pp.191-207
    • /
    • 2017
  • This paper employs entitymetrics analysis on the research works of Dong-ju Yun. He was a Korean poet who was studied by many researchers on his works, religion and life. We collected 1,076 papers about Dong-ju Yun and conducted various approaches including co-author citation analysis, topic modeling analysis to identify the topic trend in the study of Dong-ju Yun. Also we extracted entities like person's name and literature's title from abstract to examine the relationship among them. The result of this paper enables us to objectively identify the topic trend and infer implicit relationships between key concept associated with Dong-ju Yun based on text data. Moreover, we observed sub-research topics such as life, poem, aesthetic existence, comparative literature, literary translation, and religious beliefs. This paper shows how entitymetrics can be utilized to study intellectual structures in the humanities.

Research Trend Analysis in Fashion Design Studies in Korea using Topic Modeling (토픽모델링을 이용한 국내 패션디자인 연구동향 분석)

  • Jang, Namkyung;Kim, Min-Jeong
    • Journal of Digital Convergence
    • /
    • v.15 no.6
    • /
    • pp.415-423
    • /
    • 2017
  • This study explored research trends by investigating articles published in the Journal of Korean Society of Fashion Design from 2001 through 2015. English key words and abstracts were analyzed using text mining and topic modeling techniques. The findings are as followings. By the text mining technique, 183 core terms, appeared more than 30 times, were derived from 7137 words used in total 338 articles' key words and abstracts. 'Fashion' and 'design' showed the highest frequency rate. After that, the well-received topic modeling technique, LDA, was applied to the collected data sets. Several distinct sub-research domains strongly tied with the previous fashion design field, except for topics such as fashion brand marketing and digital technology, were extracted. It was observed that there are the growing and declining trends in the research topics. Based on findings, implication, limitation, and future research questions were presented.

Analysis of the abstracts of research articles in food related to climate change using a text-mining algorithm (텍스트 마이닝 기법을 활용한 기후변화관련 식품분야 논문초록 분석)

  • Bae, Kyu Yong;Park, Ju-Hyun;Kim, Jeong Seon;Lee, Yung-Seop
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1429-1437
    • /
    • 2013
  • Research articles in food related to climate change were analyzed by implementing a text-mining algorithm, which is one of nonstructural data analysis tools in big data analysis with a focus on frequencies of terms appearing in the abstracts. As a first step, a term-document matrix was established, followed by implementing a hierarchical clustering algorithm based on dissimilarities among the selected terms and expertise in the field to classify the documents under consideration into a few labeled groups. Through this research, we were able to find out important topics appearing in the field of food related to climate change and their trends over past years. It is expected that the results of the article can be utilized for future research to make systematic responses and adaptation to climate change.

A Study on Research Topics for Thyroid Cancer in Korea (국내 갑상선암 연구 주제 동향 분석)

  • Yang, Ji-Yeon;Shin, Seung-Hyeok;Heo, Seong-Min;Lee, Tae-Gyeong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.409-410
    • /
    • 2019
  • 본 논문에서는 국내 갑상선암의 연구 동향을 파악하기 위해 텍스트 중심의 접근법을 제안한다. 국내 갑상선암은 2000년대에 들어서며 발생이 급증하여 과잉진단의 논란을 불러일으켰으나, 다양한 분야의 자정 노력으로 수술 환자수가 크게 줄었다. 본 연구에서는 텍스트 마이닝 기술을 사용하여 디비피아에 등록되어 있는 갑상선암 관련 논문의 키워드와 초록을 수집하여 분석하였다. 1980년대는 대부분의 사례보고가 있었고 1990년대에 들어서면서 검진을 통한 조기 진단의 내용이 자주 나타났다. 2000년대에는 여러 장비들을 활용한 검사방법과 미세한 암의 발견에 대한 논의가 증가하였음을 확인 할 수 있었다. 2010년대에 들어서는 환자의 삶의 질에 대한 연구가 많이 이루어졌다. 지난 수십 년 동안 갑상선 암 연구 주제에 대해 뚜렷한 변화가 나타났으며, 향후 연구의 기초자료로 활용될 수 있으리라 기대된다.

  • PDF

Study on the Research Trend of Overseas Elderly Occupational Therapy Using Text Mining (텍스트마이닝을 활용한 국외 노인작업치료의 연구동향 분석)

  • Kim, Ah-Ram;Lee, Tae kwon;Jeong, In Jae;Park, Hae Yean
    • Therapeutic Science for Rehabilitation
    • /
    • v.10 no.1
    • /
    • pp.7-17
    • /
    • 2021
  • Objective : The purpose of this study was to quantitatively analyze the quantitative changes in, and the status of, overseas occupational therapy using text mining. Methods : Using PubMed, research papers on Elderly, Health and Occupational therapy published between 2009 and 2019 were selected for analysis, Abstracts of the selected papers were analyzed. The number of annual papers, the key words, the key words by year, and the relationship between the words were analyzed. Results : The number of papers published from 2009 to 2019 was 9,941, there was a gradual increase from 2009 to the highest in 2017 or 2018, followed by a decreasing trend in 2019. Within the last five years, the most frequent words were Care, Group, Intervention, Pain, Treatment, and Work. There was a strong relationship between the words based on the average frequency over the last 11 years, function, health, event, and partition. Conclusion : This study is meaningful because it applied a new research method called text mining to the empirical and systematic analysis of trends in occupational therapy and presented macroscopic and comprehensive results. The findings are expected to help establish new research directions at clinical and research sites for occupational therapy related to older adults.