• 제목/요약/키워드: 텍스트마이닝 기법

검색결과 471건 처리시간 0.032초

텍스트 마이닝을 이용한 지능적 워드클라우드 (Intelligent Wordcloud Using Text Mining)

  • 김연창;지상수;박동서;이충호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.325-326
    • /
    • 2019
  • 본 논문은 텍스트 마이닝 기법으로 명사의 빈도수를 조사하여 워드클라우드를 나타내는 기존의 방법을 개선하여 지능적 워드클라우드를 구현하는 방법을 제안한다. 텍스트 마이닝 시에 명사 단어를 추출하는 사전에 누락된 신조어 등의 단어를 효과적으로 추가하고, 동사 등 다른 품사위주의 워드클라우드를 시각적으로 보여주는 방법을 제안한다. 실험에서 기존 명사의 빈도수 추출에는 KoNLP 패키지를 사용하였고, 지원되지 않는 신조어 80개를 추가하였고 빈도수를 수동으로 조사하여 추가하였다.

  • PDF

기계학습을 활용한 소셜 텍스트의 주요 정보 추출 기법 (Extracting Significant Information from Social Text using Machine Learning)

  • 김소현;김한준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.742-745
    • /
    • 2016
  • 빅데이터 시대를 맞이하여 텍스트마이닝과 오피니언마이닝의 활용도가 커지고 있는 시점에서 소셜 네트워크 데이터로부터 유용한 데이터를 추출하는 작업은 매우 중요하다. 이에 본 논문은 블로그 HTML 문서에서 추출한 태그 특징에 로지스틱 회귀 및 앙상블 기법을 적용하여 본문을 포함하는 태그를 분류하는 모델을 구성한 뒤 태그의 깊이 특징을 이용하여 주요 본문을 찾는 방법을 제안한다. 직접 수집한 데이터를 이용한 실험에서 태그 분류 정확도가 0.990, 본문을 찾아낸 문서의 비율이 80.5%로 나왔다.

교사학습 알고리즘을 이용한 텍스트 분류 시스템 (A Text Classification System based on a Supervised Learning Algorithm)

  • 김진상;성정호;김성주
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1998년도 국제 컨퍼런스: 국가경쟁력 향상을 위한 디지틀도서관 구축방안
    • /
    • pp.421-430
    • /
    • 1998
  • 지식경영을 위한 다양한 대상 업무중에서 텍스트 데이터의 마이닝은 특히 중요하다. 그 이유는 텍스트 데이터가 양적인 면에서 가장 풍부하고, 또 발견할 수 있는 지식을 가장 많이 포함하고 있기 때문이다. 본 논문에서는 텍스트 데이터베이스에서 지식발견을 위한 한 과정으로 텍스트 데이터베이스 내의 텍스트들을 분류하는 기법을 기술한다. 특히 문서 분류 방법은 데이터베이스의 일부 데이터를 훈련, 예제로 간주하여 교사 학습 알고리즘을 통해 학습한 후 나머지 데이터를 이용해 분류 정확성을 검증 및 향상시킨다. 시험 데이터로는 인터넷의 뉴스그룹의 기사를 이용하였고, 시험 결과 분류의 정확성은 한글 및 영문 모두 최소 70% 이상으로 나타났다.

  • PDF

텍스트 마이닝 알고리즘을 이용한 기상청 연구개발분야 과제의 추세 분석 (Analysis of patterns in meteorological research and development using a text-mining algorithm)

  • 박홍주;김하빈;박태영;이영섭
    • 응용통계연구
    • /
    • 제29권5호
    • /
    • pp.935-947
    • /
    • 2016
  • 이 연구에서는 비정형 자료 분석 기법 중 하나인 텍스트 마이닝 기법으로 기상청 연구개발분야 과제의 동향에 대하여 분석하였다. 이를 위하여 용어사전을 구축하고, 전처리를 하여 용어-문서 행렬을 만들었다. 이것을 이용해 연도별 용어 빈도수를 측정하고, 자주 나타나는 단어들에 대해서는 상대도수의 변화에 대해서 관찰하였다. 그리고 회귀 분석을 사용하여 증가추세와 감소추세를 가지는 용어들을 파악하였다. 이러한 분석으로 기상청 최근 연구개발 분야의 트렌드를 파악하였다. 이와 같은 연구는 향후 기상청 연구개발에 관한 기초 자료로 사용될 수 있으며, 연구개발의 방향성과 청사진을 제시하는데 이용될 수 있을 것이다.

텍스트 마이닝을 이용한 한국정보통신학회 논문지의 주제 분석 (Topic Analysis of Papers of JKIICE Using Text Mining)

  • 우영운;조경원;이광의
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 추계학술대회
    • /
    • pp.74-75
    • /
    • 2017
  • 이 논문에서는 2007년부터 2016년까지 한국정보통신학회 논문지(JKIICE)에 게재된 3,668편의 논문들의 연구 주제 분야를 파악하기 위해 텍스트 마이닝 기법을 이용하여 논문들을 분석하였다. 자료수집을 위하여 Python 기반의 웹 스크랩핑 프로그램을 사용하였으며, 자료 분석을 위해서는 R 언어로 구현된 LDA 알고리즘 기반의 토픽 모델링 기법들을 활용하였다. 연구 결과, 2016년까지 JKIICE의 투고 분야는 19개였으나 실제 최근 10년 동안 게재된 전체 논문들의 연구 주제는 크게 9가지로 대표됨을 알 수 있었다.

  • PDF

감리결과에 텍스트마이닝 기법을 적용한 프로젝트 실패 주요요인 분석 (Project Failure Main Factors Analysis using Text Mining in Audit Evaluation)

  • 장경애;장성용;김우제
    • 정보과학회 논문지
    • /
    • 제42권4호
    • /
    • pp.468-474
    • /
    • 2015
  • 기업은 프로젝트의 중요성을 인지하고 프로젝트의 실패요인을 찾아 위험을 미연에 방지하여 프로젝트의 성공율을 높이기 위해 노력해야 한다. 이것은 급변하는 외부의 변화에 신속히 대응하기 위해 필요하다. 선행연구에서도 이러한 프로젝트의 성공요인 및 실패요인에 대한 연구가 다양하게 수행되었으나, 대부분 설문조사와 샘플링 통계분석으로 연구가 수행되어 데이터의 객관성과 정량적 분석에 한계를 갖고 있었다. 따라서 본 연구에서는 프로젝트의 실패요인 분석을 객관적인 프로젝트의 평가보고서인 감리결과보고서에서 프로젝트의 문제를 발견하고 개선권고사항을 제시하는 부분의 텍스트를 도출하여 텍스트 마이닝을 수행하였다. 텍스트 마이닝에 적용한 알고리즘은 분류 성능이 우수한 NaiveBayes, SMO, J48 알고리즘이다. 실험은 10배 교차검증을 수행하였고 정확률과 재현율로 평가하였다. 도출된 텍스트에서 프로젝트의 실패요인을 분석하여 프로젝트 수행에 활용될 수 있도록 하였다.

텍스트마이닝 기법을 활용한 국내외 장소성 관련 연구동향 분석 (Analyzing the Study Trends of 'Sense of Place' Using Text Mining Techniques)

  • 이인아;김혜진
    • 한국비블리아학회지
    • /
    • 제30권2호
    • /
    • pp.189-209
    • /
    • 2019
  • 주경로 분석(Main Path Analysis, MPA)은 문헌의 인용정보를 기반으로 지식이 전달되는데 기여한 핵심 문헌을 추출하는 텍스트마이닝 기법 중 하나이다. 본 연구는 1990년부터 2018년까지 국내외에서 발행된 장소성 관련 논문의 인용정보와 초록을 토대로 주경로 분석과 단어동시출현빈도 연관어 네트워크 분석을 적용하여 연구동향을 파악하였다. 1990년부터 2018년까지 수집된 문헌을 5년씩 기간 구분하여 (마지막 기간은 3년) 각 기간 별로 국내외에서 장소성 관련 연구가 전반적으로 어떻게 진행되었는지 비교 분석하여 제시하였다. 주경로 분석 결과, 1990년부터 해외의 장소성 관련 연구는 개인 정체성, 공공 토지 관리, 환경 교육, 도시 개발 분야 순으로 진행되어 온 것으로 나타났다. 단어동시출현을 기반으로 한 연관어 네트워크를 통해서는 국내의 경우 도시 개발, 문화, 문학, 역사 등 다양한 차원에서 장소성이 논의되는 격변기를 겪는 것으로 해석할 수 있었다. 반면 국외에서는 건강, 정체성, 경관, 도시 개발 관련 논의가 90년대부터 꾸준히 이루어지고 있는 것으로 파악되었다. 본 연구는 장소성 연구동향을 기존의 특정 영역에 장소성 개념을 적용하여 분석하는 미시적 관점의 분석이 아닌 다양한 텍스트마이닝 기법을 적용하여 장소성을 주제로 삼고 있는 논문의 전반적인 흐름을 파악하는 통시적 접근의 방법을 제시하였다는 점에서 시사점을 지닌다.

텍스트 마이닝을 이용한 소비자 소비패턴 분석 기법 설계 (An Analysis Scheme Design of Customer Spending Pattern using Text Mining)

  • 정은희;이병관
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권2호
    • /
    • pp.181-188
    • /
    • 2018
  • 본 논문에서는 텍스트 마이닝을 이용한 소비자의 소비패턴 분석 기법을 제안하였다. 제안하는 소비패턴 분석기법에서는 첫째, 피어슨의 상관계수를 이용하여 사용자의 평가점수에 대한 유사도를 분석하고, 둘째, 텍스트 마이닝 기법 중의 하나의 TD-IDF의 코사인 유사도를 이용하여 사용자의 리뷰들간의 유사도를 분석하고, 셋째, Sentiwordnet를 이용하여 평가점수와 리뷰의 일치성을 분석하였다. 그리고 제안하는 소비패턴 분석 기법은 평가점수의 유사도와 리뷰의 유사도를 이용하여 근접이웃들을 선정하고, 선정된 이웃에 소비패턴에 적합한 추천리스트를 제공하였다. 추천리스트의 정확도는 피어슨 상관계수가 0.79, TD-IDF가 0.73, 그리고 제안하는 소비패턴분석기법이 0.82로 나타났다. 즉, 제안하는 소비패턴분석기법은 소비자의 정량적인 평가점수와 정성적인 리뷰를 모두 이용하므로 소비 패턴을 좀 더 정확하게 분석할 수 있었다.

텍스트마이닝 기법을 활용한 정보통신기술 기반 건설자동화 연구동향 분석 (A Text Mining Analysis for Research Trend about Information and Communication Technology in Construction Automation)

  • 임시영;김석
    • 한국건설관리학회논문집
    • /
    • 제17권6호
    • /
    • pp.13-23
    • /
    • 2016
  • 정보통신기술 기반 건설자동화는 건설산업의 생산성 향상을 위한 중요한 분야로 인식되어 많은 연구가 진행되어 왔다. 이에 본 연구에서는 텍스트마이닝 기법을 활용하여 정보통신기술 기반 건설자동화 연구의 국내 동향을 살펴보았다. 분석 결과, '사업진행현황 수집 및 분석기술(26%)'과 '건설장비 자동화 요소분석 및 적용기술(28%)'이 주요한 연구 분야로 나타났다. '사업진행현환 수집 및 분석기술'에서는 건설정보가 핵심키워드로 나타났으며, 건설정보 중심의 자원관리, 현장관리, 정보관리 등의 연구와 실시간 정보를 통한 모니터링 연구 등이 주요한 연구방향으로 나타났다. '건설장비 자동화 요소분석 및 적용기술'에서는 유비쿼터스가 핵심 키워드로 등장하였으며 유비쿼터스 개념의 정보관리, 현장관리, 계측시스템 적용 등이 주요한 연구 방향으로 나타났다.

텍스트마이닝을 활용한 연구동향 분석: 소셜네트워크서비스를 중심으로 (Research Trends Investigation Using Text Mining Techniques: Focusing on Social Network Services)

  • 윤혜진;김창식;곽기영
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권3호
    • /
    • pp.513-519
    • /
    • 2018
  • 본 연구의 목적은 소셜네트워크서비스 주제에 관한 연구동향을 조사하는 것이다. 연구의 목적을 달성하기 위해서 웹오브사이언스 데이터베이스에서 제목에 'Social Network Service(SNS)'를 포함하는 1994년부터 2016년까지 출판된 논문 초록 308편을 분석 하였다. 본 연구에서는 텍스트마이닝 기법 중에서 최근 많이 적용되는 토픽모델링기법을 활용하였다. 토픽모델링 분석결과 20개의 토픽(신뢰, 지지, 만족 모델, 조직 지배구조, 모바일 시스템, 인터넷 마케팅, 대학생 효과, 의견 확산, 고객, 정보보호, 건강관리, 웹 협업, 방법, 학습 효과, 지식, 개인 이론, 아동 지지, 알고리즘, 미디어 참여, 문맥 시스템)이 도출되었다. 또한 시계열회귀분석 결과 모든 토픽은 상승 추세로 나타났다.