• Title/Summary/Keyword: 텍스트기반 분류

Search Result 354, Processing Time 0.025 seconds

Emotion Classification from Text based on Natural Language Processing (자연어 처리 기반 텍스트 감정 분류 모델)

  • Minju Kim;Hyojeong Jin;Junghoon Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.690-691
    • /
    • 2024
  • 본 논문에서는 특정 서비스군의 소비자 니즈를 신속히 파악하기 위하여 일기와 같은 자연언어 텍스트를 활용한 분류 모델을 개발한다. 목적에 맞는 감정상태군을 정의하여 필수적인 감정들로 통합한 후 주어진 데이터셋에서 해당 감정 컬럼을 추출하여 텍스트 형식을 통일한다. 파이썬의 Keras 라이브러리를 사용하여 임베딩 레이어, LSTM 레이어, 밀집 레이어 등으로 학습 네트워크를 구성한 후 추출된 텍스트로 학습한 결과는 15회의 이포크 수행으로 98%의 정확도에 도달한다.

Classification of ratings in online reviews (온라인 리뷰에서 평점의 분류)

  • Choi, Dongjun;Choi, Hosik;Park, Changyi
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.4
    • /
    • pp.845-854
    • /
    • 2016
  • Sentiment analysis or opinion mining is a technique of text mining employed to identify subjective information or opinions of an individual from documents in blogs, reviews, articles, or social networks. In the literature, only a problem of binary classification of ratings based on review texts in an online review. However, because there can be positive or negative reviews as well as neutral reviews, a multi-class classification will be more appropriate than the binary classification. To this end, we consider the multi-class classification of ratings based on review texts. In the preprocessing stage, we extract words related with ratings using chi-square statistic. Then the extracted words are used as input variables to multi-class classifiers such as support vector machines and proportional odds model to compare their predictive performances.

Automatic Classification of Web Documents Using Concept-Based Keyword Information (개념 기반 키워드 정보를 이용한 웹 문서의 자동 분류)

  • 박사준;김기태
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.151-153
    • /
    • 2003
  • 본 연구에서는 웹 문서를 분류하기 위해서 분류하고자 하는 영역(category)에 대한 개념 지식을 이용한다. 먼저, 영역별 개념 지식을 기구축된 웹 문서의 집합으로부터 제목과 하이퍼링크에 기반한 앵커 텍스트를 이용하여 개념을 보유한 키워드를 추출한다. 추출된 키워드를 형태소 분석을 통해 색인어로 추출한다. 추출된 색인어에 대해 TFIDF를 확장한 영역 적용 색인 가중치 TFIDFc를 적용하여 영역별 개념 기반 색인어와 색인를 구축한다. 색인은 TFIDF를 영역별로 확장하여 구축한다. 구축된 영역별 개념 기반 색인을 이용하여 새로운 웹 문서에 대해서 어떤 영역에 해당하는 가를 결정하는 자동 분류 알고리즘을 수행한다. 자동 분류 알고리즘에 의해 수행된 문서는 영역별로 정리되며, 또한, 분류된 웹 문서의 색인어는 새로운 개념 기반 키워드로 추출되어 개념 기반 영역 지식을 구축한다.

  • PDF

Interplay of Text Mining and Data Mining for Classifying Web Contents (웹 컨텐츠의 분류를 위한 텍스트마이닝과 데이터마이닝의 통합 방법 연구)

  • 최윤정;박승수
    • Korean Journal of Cognitive Science
    • /
    • v.13 no.3
    • /
    • pp.33-46
    • /
    • 2002
  • Recently, unstructured random data such as website logs, texts and tables etc, have been flooding in the internet. Among these unstructured data there are potentially very useful data such as bulletin boards and e-mails that are used for customer services and the output from search engines. Various text mining tools have been introduced to deal with those data. But most of them lack accuracy compared to traditional data mining tools that deal with structured data. Hence, it has been sought to find a way to apply data mining techniques to these text data. In this paper, we propose a text mining system which can incooperate existing data mining methods. We use text mining as a preprocessing tool to generate formatted data to be used as input to the data mining system. The output of the data mining system is used as feedback data to the text mining to guide further categorization. This feedback cycle can enhance the performance of the text mining in terms of accuracy. We apply this method to categorize web sites containing adult contents as well as illegal contents. The result shows improvements in categorization performance for previously ambiguous data.

  • PDF

Efficient Emotion Classification Method Based on Multimodal Approach Using Limited Speech and Text Data (적은 양의 음성 및 텍스트 데이터를 활용한 멀티 모달 기반의 효율적인 감정 분류 기법)

  • Mirr Shin;Youhyun Shin
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.4
    • /
    • pp.174-180
    • /
    • 2024
  • In this paper, we explore an emotion classification method through multimodal learning utilizing wav2vec 2.0 and KcELECTRA models. It is known that multimodal learning, which leverages both speech and text data, can significantly enhance emotion classification performance compared to methods that solely rely on speech data. Our study conducts a comparative analysis of BERT and its derivative models, known for their superior performance in the field of natural language processing, to select the optimal model for effective feature extraction from text data for use as the text processing model. The results confirm that the KcELECTRA model exhibits outstanding performance in emotion classification tasks. Furthermore, experiments using datasets made available by AI-Hub demonstrate that the inclusion of text data enables achieving superior performance with less data than when using speech data alone. The experiments show that the use of the KcELECTRA model achieved the highest accuracy of 96.57%. This indicates that multimodal learning can offer meaningful performance improvements in complex natural language processing tasks such as emotion classification.

An Experimental Study on Feature Ranking Schemes for Text Classification (텍스트 분류를 위한 자질 순위화 기법에 관한 연구)

  • Pan Jun Kim
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.1
    • /
    • pp.1-21
    • /
    • 2023
  • This study specifically reviewed the performance of the ranking schemes as an efficient feature selection method for text classification. Until now, feature ranking schemes are mostly based on document frequency, and relatively few cases have used the term frequency. Therefore, the performance of single ranking metrics using term frequency and document frequency individually was examined as a feature selection method for text classification, and then the performance of combination ranking schemes using both was reviewed. Specifically, a classification experiment was conducted in an environment using two data sets (Reuters-21578, 20NG) and five classifiers (SVM, NB, ROC, TRA, RNN), and to secure the reliability of the results, 5-Fold cross-validation and t-test were applied. As a result, as a single ranking scheme, the document frequency-based single ranking metric (chi) showed good performance overall. In addition, it was found that there was no significant difference between the highest-performance single ranking and the combination ranking schemes. Therefore, in an environment where sufficient learning documents can be secured in text classification, it is more efficient to use a single ranking metric (chi) based on document frequency as a feature selection method.

Emotion Recognition using Various Combinations of Audio Features and Textual Information (음성특징의 다양한 조합과 문장 정보를 이용한 감정인식)

  • Seo, Seunghyun;Lee, Bowon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.137-139
    • /
    • 2019
  • 본 논문은 다양한 음성 특징과 텍스트를 이용한 멀티 모드 순환신경망 네트워크를 사용하여 음성을 통한 범주형(categorical) 분류 방법과 Arousal-Valence(AV) 도메인에서의 분류방법을 통해 감정인식 결과를 제시한다. 본 연구에서는 음성 특징으로는 MFCC, Energy, Velocity, Acceleration, Prosody 및 Mel Spectrogram 등의 다양한 특징들의 조합을 이용하였고 이에 해당하는 텍스트 정보를 순환신경망 기반 네트워크를 통해 융합하여 범주형 분류 방법과 과 AV 도메인에서의 분류 방법을 이용해 감정을 이산적으로 분류하였다. 실험 결과, 음성 특징의 조합으로 MFCC Energy, Velocity, Acceleration 각 13 차원과 35 차원의 Prosody 의 조합을 사용하였을 때 범주형 분류 방법에서는 75%로 다른 특징 조합들 보다 높은 결과를 보였고 AV 도메인 에서도 같은 음성 특징의 조합이 Arousal 55.3%, Valence 53.1%로 각각 가장 높은 결과를 보였다.

  • PDF

Analysis of Term Ambiguity based on Genetic Algorithm (유전자 알고리즘 기반 용어 중의성 분석)

  • Kim, Jeong-Joon;Chung, Sung-Taek;Park, Jeong-Min
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.131-136
    • /
    • 2017
  • Recently, with the development of Internet media, many document materials have become exponentially increasing on the web. These materials are described, and the information on what is the most by this text are classified according. However, the text has meant that many have room for ambiguous interpretation must look at it from various angles in order to interpret them correctly. In conventional classification methods it was simply a classification only have the appearance of the text. In this paper, we analyze it in terms genetic algorithm and local preserving based techniques and implemented a clustering system fragmentation them. Finally, the performance of this paper was evaluated based on the implementation results compared to traditional methods.

Text Verification Based on Sub-Image Matching (부분 영상 매칭에 기반한 텍스트 검증)

  • Son Hwa Jeong;Jeong Seon Hwa;Kim Soo Hyung
    • The KIPS Transactions:PartB
    • /
    • v.12B no.2 s.98
    • /
    • pp.115-122
    • /
    • 2005
  • The sub-mage matching problem in which one image contains some part of the other image, has been mostly investigated on natural images. In this paper, we propose two sub-image matching techniques: mesh-based method and correlation-based method, that are efficiently used to match text images. Mesh-based method consists of two stages, box alignment and similarity measurement by extracting the mesh feature from the two images. Correlation-based method determines the similarity using the correlation of the two images based on FFT function. We have applied the two methods to the text verification in a postal automation system and observed that the accuracy of correlation-based method is $92.7\%$ while that of mesh-based method is $90.1\%$.

Development of SVM-based Construction Project Document Classification Model to Derive Construction Risk (건설 리스크 도출을 위한 SVM 기반의 건설프로젝트 문서 분류 모델 개발)

  • Kang, Donguk;Cho, Mingeon;Cha, Gichun;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.841-849
    • /
    • 2023
  • Construction projects have risks due to various factors such as construction delays and construction accidents. Based on these construction risks, the method of calculating the construction period of the construction project is mainly made by subjective judgment that relies on supervisor experience. In addition, unreasonable shortening construction to meet construction project schedules delayed by construction delays and construction disasters causes negative consequences such as poor construction, and economic losses are caused by the absence of infrastructure due to delayed schedules. Data-based scientific approaches and statistical analysis are needed to solve the risks of such construction projects. Data collected in actual construction projects is stored in unstructured text, so to apply data-based risks, data pre-processing involves a lot of manpower and cost, so basic data through a data classification model using text mining is required. Therefore, in this study, a document-based data generation classification model for risk management was developed through a data classification model based on SVM (Support Vector Machine) by collecting construction project documents and utilizing text mining. Through quantitative analysis through future research results, it is expected that risk management will be possible by being used as efficient and objective basic data for construction project process management.