• 제목/요약/키워드: 텍스트검색시스템

검색결과 353건 처리시간 0.017초

인공지능(AI) 스피커에 대한 사회구성 차원의 발달과정 연구: 제품과 시기별 공진화 과정을 중심으로 (A study of Artificial Intelligence (AI) Speaker's Development Process in Terms of Social Constructivism: Focused on the Products and Periodic Co-revolution Process)

  • 차현주;권상희
    • 인터넷정보학회논문지
    • /
    • 제22권1호
    • /
    • pp.109-135
    • /
    • 2021
  • 본 연구는 전통뉴스 보도에 나타난 인공지능(AI)스피커 뉴스 텍스트 분석을 통해 인공지능(AI) 스피커 발달과정을 분류하고 시기별 제품별 특성을 파악하였다. 또한 AI 스피커 사업자 제품별 뉴스 보도와 시기별 뉴스 보도간의 상관관계를 분석하였다. 분석에 사용된 이론적 배경은 뉴스의 프레임과 토픽프레임이다. 분석방법으로는 LDA 방식을 활용한 토픽모델링(Topic Modeling)과 의미연결망분석이 사용되었으며, 추가로 'UCINET'중 QAP분석을 적용하였다. 연구방법은 내용분석 방법으로 2014년부터 2019년까지 AI 스피커 관련 2,710건의 뉴스를 1차로 수집하였고, 2차적으로 Nodexl 알고리즘을 이용하여 토픽프레임을 분석하였다. 분석 결과 첫째, AI 스피커 사업자 유형별 토픽 프레임의 경향은 4개 사업자(통신사업자, 온라인 플랫폼, OS 사업자, IT디바이스 생산업자) 특성에 따라 다르게 나타났다. 구체적으로, 온라인 플랫폼 사업자(구글, 네이버, 아마존, 카카오)와 관련한 프레임은 AI 스피커를 '검색 또는 입력 디바이스'로 사용하는 프레임의 비중이 높았다. 반면 통신 사업자(SKT, KT)는 모회사의 주력 사업인 IPTV, 통신 사업의 '보조 디바이스' 관련한 프레임이 두드러지게 나타났다. 나아가 OS 사업자(MS, 애플)는 '제품의 의인화 및 음성 서비스' 프레임이 두드러지게 보였으며, IT 디바이스 생산업자(삼성)는 '사물인터넷(IoT) 종합지능시스템'과 관련한 프레임이 두드러지게 나타났다. 둘째, AI 스피커 시기별(연도별) 토픽 프레임의 경향은 1기(2014-2016년)에는 AI 기술 중심으로 발달하는 경향을 보였고, 2기(2017-2018년)에는 AI 기술과 이용자 간의 사회적 상호 작용과 관련되어 있었으며, 3기(2019년)에는 AI 기술 중심에서 이용자 중심으로 전환되는 경향을 나타냈다. QAP 분석 결과, AI 스피커 발달에서 사업자별과 시기별 뉴스 프레임이 미디어 담론의 결정요인에 의해 사회적으로 구성되는 것을 알 수 있었다. 본연구의 함의는 AI 스피커 진화는 사업자별, 발달시기별로 모회사 기업의 특성과 이용자 간의 상호작용으로 인한 공진화 과정이 나타냄을 발견할 수 있었다. 따라서 본 연구는 AI 스피커의 향후 전망을 예측하고 그에 따른 방향성을 제시하는 데 중요한 시사점을 제공한다.

텍스트 마이닝을 이용한 2012년 한국대선 관련 트위터 분석 (Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques)

  • 배정환;손지은;송민
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.141-156
    • /
    • 2013
  • 최근 소셜미디어는 전세계적 커뮤니케이션 도구로서 사용에 전문적인 지식이나 기술이 필요하지 않기 때문에 이용자들로 하여금 콘텐츠의 실시간 생산과 공유를 가능하게 하여 기존의 커뮤니케이션 양식을 새롭게 변화시키고 있다. 특히 새로운 소통매체로서 국내외의 사회적 이슈를 실시간으로 전파하면서 이용자들이 자신의 의견을 지인 및 대중과 소통하게 하여 크게는 사회적 변화의 가능성까지 야기하고 있다. 소셜미디어를 통한 정보주체의 변화로 인해 데이터는 더욱 방대해지고 '빅데이터'라 불리는 정보의 '초(超)범람'을 야기하였으며, 이러한 빅데이터는 사회적 실제를 이해하기 위한 새로운 기회이자 의미 있는 정보를 발굴해 내기 위한 새로운 연구분야로 각광받게 되었다. 빅데이터를 효율적으로 분석하기 위해 다양한 연구가 활발히 이루어지고 있다. 그러나 지금까지 소셜미디어를 대상으로 한 연구는 개괄적인 접근으로 제한된 분석에 국한되고 있다. 이를 적절히 해결하기 위해 본 연구에서는 트위터 상에서 실시간으로 방대하게 생성되는 빅스트림 데이터의 효율적 수집과 수집된 문헌의 다양한 분석을 통한 새로운 정보와 지식의 마이닝을 목표로 사회적 이슈를 포착하기 위한 실시간 트위터 트렌드 마이닝 시스템을 개발 하였다. 본 시스템은 단어의 동시출현 검색, 질의어에 의한 트위터 이용자 시각화, 두 이용자 사이의 유사도 계산, 트렌드 변화에 관한 토픽 모델링 그리고 멘션 기반 이용자 네트워크 분석의 기능들을 제공하고, 이를 통해 2012년 한국 대선을 대상으로 사례연구를 수행하였다. 본 연구를 위한 실험문헌은 2012년 10월 1일부터 2012년 10월 31일까지 약 3주간 1,737,969건의 트윗을 수집하여 구축되었다. 이 사례연구는 최신 기법을 사용하여 트위터에서 생성되는 사회적 트렌드를 마이닝 할 수 있게 했다는 점에서 주요한 의의가 있고, 이를 통해 트위터가 사회적 이슈의 변화를 효율적으로 추적하고 예측하기에 유용한 도구이며, 멘션 기반 네트워크는 트위터에서 발견할 수 있는 고유의 비가시적 네트워크로 이용자 네트워크의 또 다른 양상을 보여준다.

토픽모델링을 활용한 COVID-19 학술 연구 기반 연구 주제 분류에 관한 연구 (A study on the classification of research topics based on COVID-19 academic research using Topic modeling)

  • 유소연;임규건
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.155-174
    • /
    • 2022
  • 2020년 1월부터 2021년 10월 현재까지 COVID-19(치명적인 호흡기 증후군인 코로나바이러스-2)와 관련된 학술 연구가 500,000편 이상 발표되었다. COVID-19와 관련된 논문의 수가 급격하게 증가함에 따라 의료 전문가와 정책 담당자들이 중요한 연구를 신속하게 찾는 것에 시간적·기술적 제약이 따르고 있다. 따라서 본 연구에서는 LDA와 Word2vec 알고리즘을 사용하여 방대한 문헌의 텍스트 자료로부터 유용한 정보를 추출하는 방안을 제시한다. COVID-19와 관련된 논문에서 검색하고자 하는 키워드와 관련된 논문을 추출하고, 이를 대상으로 세부 주제를 파악하였다. 자료는 Kaggle에 있는 CORD-19 데이터 세트를 활용하였는데, COVID-19 전염병에 대응하기 위해 주요 연구 그룹과 백악관이 준비한 무료 학술 자료로서 매주 자료가 업데이트되고 있다. 연구 방법은 크게 두 가지로 나뉜다. 먼저, 47,110편의 학술 논문의 초록을 대상으로 LDA 토픽 모델링과 Word2vec 연관어 분석을 수행한 후, 도출된 토픽 중 'vaccine'과 관련된 논문 4,555편, 'treatment'와 관련된 논문 5,791편을 추출한다. 두 번째로 추출된 논문을 대상으로 LDA, PCA 차원 축소 후 t-SNE 기법을 사용하여 비슷한 주제를 가진 논문을 군집화하고 산점도로 시각화하였다. 전체 논문을 대상으로 찾을 수 없었던 숨겨진 주제를 키워드에 따라 문헌을 분류하여 토픽 모델링을 수행한 결과 세부 주제를 찾을 수 있었다. 본 연구의 목표는 대량의 문헌에서 키워드를 입력하여 특정 정보에 대한 문헌을 분류할 수 있는 방안을 제시하는 것이다. 본 연구의 목표는 의료 전문가와 정책 담당자들의 소중한 시간과 노력을 줄이고, 신속하게 정보를 얻을 수 있는 방법을 제안하는 것이다. 학술 논문의 초록에서 COVID-19와 관련된 토픽을 발견하고, COVID-19에 대한 새로운 연구 방향을 탐구하도록 도움을 주는 기초자료로 활용될 것으로 기대한다.