• Title/Summary/Keyword: 터파기 공사

Search Result 27, Processing Time 0.024 seconds

The Economic Impact of Excavation Work Failure on a Construction Project (터파기 공사 사고가 공사에 미치는 경제적 영향)

  • Go, Kwang-Ro;Lee, Ghang
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.643-646
    • /
    • 2007
  • As increase of the land price at downtown area, it makes people more and more interested of improving the space utilization such as makes buildings bigger, deeper and higher. Therefore, the importance of the underground construction which is the basic principle has been increased. As constructors have to complete underground construction as soon as possible with the minimum costs, they concentrate on the whole process of underground structure. Although they makes every these efforts, construction failure still happen because of the uncertainty of the condition of soil and the unexpected danger of underground construction. To make matter worse, there are only some examples without detailed information like 'how much this breakdown damage to the construction?' so it is the anther problem that most of people doesn't recognize the economical negative impact of underground structure breakdown. This report would make people understood the importance and risk of the underground construction by showing some analysis which was assumed from the real accidents.

  • PDF

A Case Analysis of the Economic Impact on Accidents during Excavation (터파기 공사 사고의 경제적 영향 사례분석)

  • Go, Kwang-Ro;Lee, Ghang;Choi, Myung-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.7-10
    • /
    • 2008
  • As the land price in the downtown area increases, buildings are becoming bigger, deeper and higher. Consequently, the importance of underground construction has increased. Although construction engineers make every effort to complete underground construction without any problem, construction failures like landslides and the collapse of a retaining wall occur because of the uncertainty of the soil conditions as well as the unexpected risks of excavation work. In order to prevent potential excavation accidents, it is essential to understand the causes and impacts of such accidents. However, there are only a few examples of construction failures, which show the economic impact on accidents during excavation because of the sensibility of the information. This paper presents two cases of excavation accidents, which were investigated by construction insurance company. The compensation for the accidents paid by the insurance company was compared with the estimated costs calculated based on the estimation method for excavation accidents proposed by our previous study. The comparison results showed that the estimate calculated by our method was much less than the actual compensation because the estimate solely focused on the construction costs whereas the compensation included other external factors.

  • PDF

A Study on the Reinforcement of the Soil Blocking Facilities Due to Water Pipe Rupture Accident (상수관 파열 사고로 인한 흙막이 가시설 보강사례 연구)

  • Woo, Jong-Tae
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.241-243
    • /
    • 2023
  • 아파트 신축공사 흙막이 가시설 현장에 근접 매설된 상수관의 누수 및 파열 사고로 터파기 공사 현장에 토사 유실 및 지반 함몰이 발생되었으며, 흙막이 가시설의 토류판이 파손되었다. 흙막이 가시설의 안정성 확보를 위해 벽체구간은 레이커로 보강하고 사보강재는 1단과 2단을 묶어 힘을 분산시키고 종방향으로 보강 및 토류판 보강을 시행하였다.

  • PDF

Case Analyses of the Selection Process of an Excavation Method (지하공사 사례를 기반으로 한 터파기 공법 선정프로세스 분석)

  • Park, Sang-Hyun;Lee, Ghang;Choi, Myung-Seok;Kang, Hyun-Jeong;Rhim, Hong-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.101-104
    • /
    • 2007
  • As the proportion of underground construction increases, the impact of inappropriate selection of a underground construction method for a construction size increases. The purpose of this study is to develop an objective way of selecting an excavation method. There have been several attempts to achieve the same goal using various data mining methods such as the artificial neural network, the support vector machine, and the case-based reasoning. However, they focused only on the selection of a retaining wall construction method out of six types of retaining walls. When we categorized an underground construction work into four groups and added more number of independent variables (i.e., more number of construction methods), the predictability decreased. As an alternative, we developed a decision tree by analyzing 25 earthwork cases with detailed information. We implemented the developed decision tree as a computer-supported program called Dr. underground and are still in the process of validating and revising the decision tree. This study is still in a preliminary stage and will be improved by collecting and analyzing more cases.

  • PDF

Productivity Analysis on the Standard Quantity-Per-Unit Costing Method and Work Crew Combination Method : Focused on Non-Vibration Mass Excavation Method (무진동굴착공법의 일위대가방식과 작업조방식의 생산성 비교 분석)

  • Lee, Dong Wook;Cho, Hong Jun;Lee, Keun Jo;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3D
    • /
    • pp.457-468
    • /
    • 2011
  • Recently, the non-vibration mass excavation method is used on sewage pipes and road construction sites in Jeju. However, a construction cost estimation based on the unit quantity does not provide a proper unit price. In this study, a comparison of the productivity of the standard quantity-per-unit costing method and the one of the work crew combination method was made based on the site monitoring of the non-vibration mass excavation method that is used in construction sites near Jeju. For this, data of 35 sites were collected: a regression equation was derived from the 30 data, and verification was carried out through the remaining 5 data. The analysis concluded that a day's workload is $16.43m^3$. In addition, a combination of the equipment considering the site conditions and the amount of labor, which varies with the number of work crew was obtained in order to estimate the construction cost of the work crew combination method. The construction cost was calculated based on the one-day workload ($16.43m^3$) derived from the regression analysis. The cost then was analyzed and compared with the standard quantity-per-unit costing method.

Safety Management of the Retaining Wall Using USN Sonar Sensors (USN 초음파 센서를 활용한 흙막이 안전관리)

  • Moon, Sung-Woo;Choi, Eun-Gi;Hyun, Ji-Hun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.22-30
    • /
    • 2011
  • In the construction operation, foundation work should be done in advance for the building structure to be installed. This foundation work include a number of activities such as excavation, ground water prevention, piling, wale installation, etc. Caution should be taken in the operation because the dynamics of earth movement can cause a significant failure in the temporary structure. The temporary structure, therefore, should be constantly monitored to understand its behavior. This paper introduces the USN-based monitoring system to automatically identify the behavior of the temporary structure in addition to visual inspection. The autonomous capability of the monitoring system can increase the safety in the construction operation by providing the detailed structural changes of temporary structures.

An Experimental Study on the Structural Performance of Lateral Resistance in Steel Elevator Pit (강재엘리베이터 피트 측압저항 구조성능에 관한 실험적 연구)

  • Hong, Seong-Uk;Kim, Tae-Soo;Baek, Ki-Youl
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.1-8
    • /
    • 2019
  • Steel elevator pit was developed for the purpose of minimizing the excavation, simplifying the construction of the frame and economical efficiency by improving the problems that occurred in the existing reinforced concrete. It is common to apply conventional RC method through excavation to underground structures such as underground floor collector well and elevator pit. In recent years, the use of steel collector well and steel elevator pits to reduce construction costs by minimizing the materials of steel and concrete has been continuously increasing. The steel elevator pit is an underground structure and then the performance of the welding part and the structure system is important. Specimen with only steel plate and concrete without studs could support the load more than 3 times than the specimen with deck only. Therefore, even if there is no stud, the deck (steel plate) rib is formed and the effect of restraining the steel plate and the concrete during the bending action can be expected. However, since sudden fracture in the elevator pit may occur, stud bolt arrangement is necessary for the composite effect of steel plate and concrete. It is expected that the bending strength can be expected to increase by about 15% or more depending with and without stud bolts.

A Case of Application-blasting in the Urban Blasting Works (도심지 터파기를 위한 응용발파 시공 사례)

  • Kim, Taihyun;Park, Yongwon;Cho, Raehun;Kim, Hongyool;Jeong, Byungho
    • Explosives and Blasting
    • /
    • v.34 no.2
    • /
    • pp.18-30
    • /
    • 2016
  • A drill & blasting method using explosives is the most efficient way to break the rock in the urban projects. However, the blasting method cause vibration, noise and fly-rock as blast pollutions so that blasting wroks are restricted by adjacent structures such as apartment and residence houses. To conduct blasting works at near structures, the numbers of blast-holes a blast and the size of the blast are limited by kinds of detonators and initiation methods. So, the production rate is reduced and the construction period should be increased. Therefore, in this case the deck-charge blasting methods using available detonators in domestic market were designed and evaluated in order to confirm the application possibilities in specific urban sites.

An Improvement of Concurrent Placement of Footing and Slab Concrete (기초 및 바닥층 동시타설 공사의 개선방안 연구)

  • Lee, Dong-Hoon;Choi, Jae-Hwi;Kill, Jong-Il;Seo, Deok-Seok;Kim, Sun-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.6
    • /
    • pp.121-129
    • /
    • 2009
  • The construction sites of small and medium buildings have small scale groundwork and the depth of excavation is often shallow. In this case, if the groundwork, girders, and ground slabs are built simultaneously by embedded assisting form rather than the existing conventional method to place concrete twice using the general form, we can expect to reduce the frame duration of the basement, resulting in cost savings. The existing embedded assisting form is restricted from use because there are cost problems with materials, labor costs,and with quality depending on the form's type. Therefore, this study is to provide an improved suggestion of building the groundwork, girders, and ground slabs simultaneously with Polystyrene by using the embedded assisting form. It also will compare the technique with existing methods of construction, and will verify its usefulness by evaluating each method of construction.

A Study on the Improvement of Construction Cost Standards for Pipe Laying and Joining Work (관 부설 및 접합공사 공사비산정기준 개선에 관한 연구)

  • Oh, Jae-Hoon;Ahn, Bang-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.675-684
    • /
    • 2020
  • To prevent safety accidents caused by aging pipe infrastructure and to maintain water quality, construction projects for water and sewage pipes are actively conducted across Korea. This study analyzed the criteria situations, site survey details, and regulation revisions related to the calculation of construction cost standards for pipe laying and joining work. The analysis showed that the major causes for revision are the unclear construction scope, limitations in implementing some pipe materials due to installation facility types, workforce focused on ordinary labor, limitations of manual laying work, and the lack of tool hire cost and machine expense-calculation criteria. Field studies were conducted to categorize the pipes according to their features, in addition to identifying the use of lifting heavy equipment and light equipment. In addition, excavation and testing work conducted in connection to pipe laying, as well as the use of skilled labor, were investigated. The current study clarified the work scope through new common items, provides an organization based on the pipe material, adjusted the workforce ratio to focus more on skilled labor, and developed grounds for calculating machine expenses. These revisions were estimated to save approximately 1.28% of the construction costs in each project according to an analysis of the construction cost impact study. truction costs in each project, according to an analysis of construction cost impact study.