• Title/Summary/Keyword: 터빈 모델

Search Result 392, Processing Time 0.032 seconds

A Study of the Valid Model(Kernel Regression) of Main Feed-Water for Turbine Cycle (주급수 유량의 유효 모델(커널 회귀)에 대한 연구)

  • Yang, Hac-Jin;Kim, Seong-Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.663-670
    • /
    • 2019
  • Corrective thermal performance analysis is required for power plants' turbine cycles to determine the performance status of the cycle and improve the economic operation of the power plant. We developed a sectional classification method for the main feed-water flow to make precise corrections for the performance analysis based on the Performance Test Code (PTC) of the American Society of Mechanical Engineers (ASME). The method was developed for the estimation of the turbine cycle performance in a classified section. The classification is based on feature identification of the correlation status of the main feed-water flow measurements. We also developed predictive algorithms for the corrected main feed-water through a Kernel Regression (KR) model for each classified feature area. The method was compared with estimation using an Artificial Neural Network (ANN). The feature classification and predictive model provided more practical and reliable methods for the corrective thermal performance analysis of a turbine cycle.

Dynamic Characteristics of Wind Turbine-Generator using PSS/E (PSS/E를 이용한 풍력모델의 과도특성 검토)

  • Yoo, Hyung-Sun;Park, Ji-Ho;Jyung, Tae-Young;Jeong, Ki-Seok;Lee, Hyun-Cheol;Baek, Young-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.232-233
    • /
    • 2011
  • 본 연구는 최근에 각광받고 있는 풍력터빈 발전기의 동적특성에 관한 시뮬레이션을 수행한다. 풍력터빈이 기존의 전력계통에 연계되면 전력계통에 미치는 영향은 동기발전기만으로 구성된 전력계통과는 다르며 특히 동적특성이 달라진다. 본 논문에서는 PSS/E를 이용하여 GE1.5MW의 풍력터빈에 대한 동적특성을 시뮬레이션 한다. 풍속의 변화, 부하의 변화 그리고 무한대 모선의 전압변화를 통하여 GE1.5MW의 풍력터빈의 특성을 검토하였다.

  • PDF

Modeling of gas turbine control system (가스터빈 제어시스템의 모델링)

  • 이원규
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.2
    • /
    • pp.26-30
    • /
    • 2000
  • In this paper, we obtain a mathematical model of a gas turbine control system from experimental data. The gas turbine in Gunsan power plant is selected as controlled system. The recursive least square algorithm is used to model the plant. For parameter estimation, plant is assumed as second order system and forgetting factor is 0.98 and the period of input and output signal period is 1sec. As a result, input and output characteristics of real system and modeling are identified.

  • PDF

Plant Performance Analysis for IGCC Employing HGCU(I) (고온정제를 적용한 IGCC 플랜트 성능 해석에 관한 연구(I))

  • 이윤경;서석빈;김종진
    • Journal of Energy Engineering
    • /
    • v.9 no.3
    • /
    • pp.157-162
    • /
    • 2000
  • 기존의 IGCC의 장점인 고효율 플랜트의 특성을 살리기 위해 고온정제를 적용하는 경우 조건변화에 따른 플랜트 성능의 영향을 관찰하고자 본 연구를 수행하였다. IGCC에 고온정제 공정을 적용하여 구성한 모델은 연구 목적에 알맞은 범위의 건전성을 가진 것으로 나타났으며 기타 조건을 동일하게 설정한 경우 저온 정제 공정(MDEA amine) 적용에 비해 플랜트 효율이 약 2.7% 가량 상승하였다. 한편 동일한 고온정제 공정이라도 적용하는 흡수제를 zinc titanate에서 zinc ferrite로 달리 하는 경우 탈황제의 화학 반응상 특성 및 차이점으로 인해 연료가스의 발열량 변화를 유발하므로 결과적으로 약 0.5%의 플랜트 효율 손실이 발생함을 알 수 있었다. 또한 탈황 온도 350~$650^{\circ}C$ 사이의 온도범위에 대해 민감도 분석을 실행하였으며 민감도 분석 결과 전제 온도의 증가와 플랜트 효율은 정비례하지 않으며 50$0^{\circ}C$ 이상의 정제 온도를 적용한 경우는 거의 비슷한 효율을 나타내었다. 이와 같은 결과는 정제 온도를 증가시킴으로 인해 가스터빈에 공급되는 연료가스의 온도는 높아지지만 적용한 가스터빈의 출력 및 연소 온도가 제한되어 있어 고온정제를 적용함으로써 얻어지는 이득을 가스터빈에서 충분히 보상하지 못하고 한편으로 고온정제를 채택함으로써 저온정제 적용시 보다 syngas cooler에서 회수할 수 있는 헌열이 줄어듦으로 인한 증기 터빈 출력의 감소가 커지기 때문으로 분석되었다.

  • PDF

A Study on the Step Response Model Development of a Dynamic Matrix Control(DMC) For Boiler-Turbine Systems in a Fossil Power Plant (화력발전 보일러-터빈 시스템을 위한 Dynamic Matrix Control(DMC)의 계단응답모델 선정에 관한 연구)

  • Moon, Un-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.125-133
    • /
    • 2006
  • This paper presents comparison results of Step Response Model of Dynamic Matrix Control(DMC) for a drum-type boiler-turbine system of a fossil power plant. Two possible kinds of step response models are investigated in designing the DMC, one is developed with the linearization of theoretical model and the other is developed with the process step-test data. Then, the control performances of each model-based DMC are simulated and evaluated. It is observed that the simulation results with the step-response model based on the test data show satisfactory results, while the linearized model is not suitable for the control of boiler-turbine system.

Development of Computational Orthogonal Array based Fatigue Life Prediction Model for Shape Optimization of Turbine Blade (터빈 블레이드 형상 최적설계를 위한 전산 직교배열 기반 피로수명 예측 모델 개발)

  • Lee, Kwang-Ki;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.611-617
    • /
    • 2010
  • A complex system involves a large number of design variables, and its operation is non-linear. To explore the characteristics in its design space, a Kriging meta-model can be utilized; this model has replaced expensive computational analysis that was performed in traditional parametric design optimization. In this study, a Kriging meta-model with a computational orthogonal array for the design of experiments was developed to optimize the fatigue life of a turbine blade whose behavior under cyclic rotational loads is significantly non-linear. The results not only show that the maximum fatigue life is improved but also indicate that the accuracy of computational analysis is achieved. In addition, the robustness of the results obtained by six-sigma optimization can be verified by comparison with the results obtained by performing Monte Carlo simulations.

CCT Analysis of Power System Connected to DFIG Wind Turbine (DFIG 풍력터빈이 연계된 전력계통의 CCT 영향분석)

  • Seo, Gyu-Seok;Park, Ji-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2388-2392
    • /
    • 2013
  • Wind generation systems are very different in nature from conventional generation systems. Therefore it is necessary to research dynamic characteristics of wind generation systems connected to a power system. The stability analysis of wind turbine generator is an important issue in the operation of the power system. The result of angular stability of the power system that consists of only synchronous generators is different from that of the power system including wind turbine generators. This is due to the fact that generators connected to wind turbines are generally induction generators. The angular stability assessing synchronization of generators is determined by its corresponding critical clearing time(CCT). Wind turbine models for the analysis of power system are varied and difficult to use, but now these are standardized into four types. In this paper, the analysis of the CCT of the power system connected to wind farm considering the location and capacity is performed by using DFIG(Doubly-Fed induction Generator) wind turbine built-in type3 model in PSS/E-32.

Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (I): with and without Turbulent Inflow (수평축 풍력터빈의 공력 하중 비교 (I): 난류 유입 유·무)

  • Kim, Jin;Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.391-398
    • /
    • 2016
  • This study focused on the aerodynamic loads of the horizontal axis wind turbine blade due to the normal turbulence inflow condition. Normal turbulence model (NTM) includes the variations of wind speed and direction, and it is characterized by turbulence intensity and standard deviation of flow fluctuation. IEC61400-1 recommends the fatigue analysis for the NTM and the normal wind profile (NWP) conditions. The aerodynamic loads are obtained at the blade hub and the low speed drive shaft for MW class horizontal axis wind turbine which is designed by using aerodynamically optimized procedure. The 6-components of aerodynamic loads are investigated between numerical results and load components analysis. From the calculated results the maximum amplitudes of oscillated thrust and torque for LSS with turbulent inflow condition are about 5~8 times larger than those with no turbulent inflow condition. It turns out that the aerodynamic load analysis with normal turbulence model is essential for structural design of the wind turbine blade.

Anomaly detection in blade pitch systems of floating wind turbines using LSTM-Autoencoder (LSTM-Autoencoder를 이용한 부유식 풍력터빈 블레이드 피치 시스템의 이상징후 감지)

  • Seongpil Cho
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.43-52
    • /
    • 2024
  • This paper presents an anomaly detection system that uses an LSTM-Autoencoder model to identify early-stage anomalies in the blade pitch system of floating wind turbines. The sensor data used in power plant monitoring systems is primarily composed of multivariate time-series data for each component. Comprising two unidirectional LSTM networks, the system skillfully uncovers long-term dependencies hidden within sequential time-series data. The autoencoder mechanism, learning solely from normal state data, effectively classifies abnormal states. Thus, by integrating these two networks, the system can proficiently detect anomalies. To confirm the effectiveness of the proposed framework, a real multivariate time-series dataset collected from a wind turbine model was employed. The LSTM-autoencoder model showed robust performance, achieving high classification accuracy.

Study on Design of Darrieus-type Tidal Stream Turbine Using Parametric Study (파라메트릭 스터디를 통한 조류발전용 다리우스 터빈의 설계연구)

  • Han, Jun-Sun;Hyun, Beom-Soo;Choi, Da-Hye;Mo, Jang-Oh;Kim, Moon-Chan;Rhee, Shin-Hyung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.241-248
    • /
    • 2010
  • This paper deals with the performance analysis and design of the Darrieus-type vertical axis turbine to evaluate the effect of key design parameters such as number of blade, blade chord, pitch and camber. The commercial CFD software FLUENT was employed as an unsteady Reynolds-Averaged Navier-Stokes (RANS) solver with k-e turbulent model. Grid system was modelled by GAMBIT. Basic numerical methodology of the present study is appeared in Jung et al. (2009). Two-dimensional analysis was mostly adopted to avoid the barrier of massive calculation required for parametric study. It was found that the highly efficient turbine model could be designed through the optimization of design parametrrs.