• 제목/요약/키워드: 터빈 날개

Search Result 90, Processing Time 0.034 seconds

Study on Vertical Axis Water Turbine with Movable Dual Blades (가변형 이중 날개를 갖는 수직축 수류터빈에 대한 연구)

  • Kim, Do-Hyung;Ahn, Byoung-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.125-133
    • /
    • 2016
  • In this paper, we propose a vertical axis water turbine with dual blades. A parametric study was conducted using numerical analyses. First, a two-dimensional finite-volume analysis with a commercial code was used to find the pitch angle of the main blade under different tip speed ratio conditions. Second, we developed a potential-based panel method to find the best configuration of the inner blades. Experimental tests were conducted at the circulating water channel of Chungnam National University. Various configurations of the dual blades were considered, and their performances were comparatively investigated. The results showed that the turbine with movable dual blades produces a constant torque and tip speed ratio at various flow rates.

합금강 재질의 대용량 1000MW급 저압터빈 최종단 익(翼) 설계기술 동향

  • Kim, Du-Yeong
    • 열병합발전
    • /
    • s.71
    • /
    • pp.3-9
    • /
    • 2009
  • 최근 국내 발전분야 최고 관심사는 직렬형 축을 가지는 1000MW 이상의 대용량 고효율 증기터빈 개발 및 운영이다. 발전 산업계 요구를 충족시키기 위하여 터빈 설계사들은 새로운 대용량의 저압터빈 실린더 모듈을 개발하고 있는데 개발된 모듈의 특징은 진보된 유체역학과 구조적 분석 기술을 결합하고 기존 합금강 재질 최종단 익에 작용하는 응력한계 길이인 1000mm 이상 길이의 최종단 날개를 개발하는 것이다. 본 논고에서는 Alsthom사에서 새롭게 개발된 최종단 익(翼)의 공역학 및 기계적 특성 설계 개발내용과 실증시험 결과를 소개하고자 한다.

  • PDF

MPPT and yaw-axis control of parallel type wind turbine (병렬형 풍력 발전시스템의 MPPT 및 yaw축 제어)

  • IM, Jong-Wook;CHOY, Ick
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.250-251
    • /
    • 2010
  • 본 연구는 수평축(horizontal axis) 풍력 터빈에 의해서 수직축 발전기를 운전하는 구조 및 그 운전 방식에 관한 것으로서 바람에 의해 수평축 터빈 로터로 입력된 회전력을 기계적으로 두 개의 수직축 회전 성분으로 변환하여 이들로부터 전기 에너지를 얻어내고 필요에 따라 터빈 날개가 바람이 부는 방향을 향하도록 yaw-axis 제어를 하는 기술에 관한 것이다.

  • PDF

Analysis of Particle Laden Flow and Erosion Rate Around Turbine Cascade (터빈 익렬 주위에서의 부유입자 유동 및 마모량 해석)

  • 김완식;조형희
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.14-23
    • /
    • 1998
  • The present study investigates numerically particle laden flow through compressor cascade. In general, a lot of turbine engines are affected by various particles which are suspending in the atmosphere. Especially in the case of aircraft aviating in volcanic, industrial and desert region including many particles, each components of engine system are damaged severely. That damage modes are erosion of compressor binding and rotor path components, partial or total blockage of cooling passage and engine control system degradation.. Initial damages can not be serious but cumulation of damages influences on safety of aircraft control and economical maintenance cost of engine system can be increased. When dust, materials and volcanic particles in the atmosphere flow in the compressor, it is necessary to predict damaged and deposited region of compressor blades. To the various flow inlet angle, predictions of particles trajectory in compressor cascade by Lagrangian method are presented and impulses by impaction of particles at blade surface are calculated. By the definition of particle deposition efficiency, characteristics of particles impact are considered quantitatively. With these prediction and experimental data, erosion rates are predicted for two materials - ceramic, soft metal - on compressor blade surface. Improvements like coating of blade surface could be found, by above prediction.

  • PDF

Study on Power Measurement and Comparison of Marine Current Turbine in a Towing Tank (예인수조를 이용한 조류발전 터빈의 동력 계측 및 비교 연구)

  • Do, In-Rok;Kim, Moon-Chan;Lee, Seung-Ki;Hyun, Beom-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.4
    • /
    • pp.230-238
    • /
    • 2011
  • The experimental study for the performances of 100 kW marine current turbines (Horizontal Axis Turbine) has been conducted with three cases of 700 mm diameter model in PNU 100 m towing tank. Three cases of impeller have been designed according to the variation of section configuration and tip shape. The model tests have been carried out at different speed of revolution to find out the scale effect (Reynolds number effect). The designed rake impeller was the best among them in the efficiency point of view especially at high Tip Speed Ratio (TSR). The present study is expected to be extended to conduct at high reynolds number as well as the computational study for the validation.

Optimal Rotor Blade Design for Tidal In-stream Energy (조류발전용 로터 블레이드의 최적 형상 설계)

  • Yang, Chang-Jo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.1
    • /
    • pp.75-82
    • /
    • 2011
  • Marine current energy is one of the most interesting renewable and clean energy resources that have been less exploited. Especially, Korea has worldwide outstanding tidal current energy resources and it is highly required to develop tidal in-stream energy conversion system in coastal area. The objective of study is to investigate harnessing techniques of tidal current energy and to design the a 100 kW horizontal axis tidal turbine using blade element momentum theory with Prandtl's tip loss factor for optimal design procedures. In addition, Influence of Prandtl's tip loss factor at local blade positions as a function of tip speed ratio was studied, and the analysed results showed that power coefficient of designed rotor blade using NACA 63812 was 0.49 at rated tip speed ratio.

Effect of Blade Sweep on the Performance of the Wells Turbine for Wave Power Conversion (파력발전용 웰즈터빈성능에 미치는 날개 Sweep의 영향)

  • Kim, Tae-Ho;Setoguchi, Toshiaki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.961-966
    • /
    • 2001
  • The Wells turbine is one of the simplest and most promising self-rectifying air turbines which are useful for the systems of alternative energy development in near future, and it is economically desirable from the point of view of the practical use, as well. To investigate the effect of blade sweep on the performance of the Wells turbine, computations of a fully 3-D Navier-Stokes are carried out under steady flow conditions of NACA0020 blade. It is known that the performance of the Wells turbine is considerably influenced by the blade sweep. An optimum blade sweep ratio(f=0.35) for the NACA0020 is found to be the most promising for the practical use, and this value is in good agreement with the previous experiments. It is also found that the overall turbine performance for the NACA0020 is better than that for the CA9.

  • PDF

A Study of Performance Analysis for a Steam Turbine Blade (증기터빈 날개의 성능해석에 대한 연구)

  • Chung, Kyung-Nam;Kim, Yang-Ik;Sung, Ju-Heon;Chung, In-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.119-124
    • /
    • 2004
  • In this study, a rotor blade of a Curtis turbine is investigated. Bezier curve is generally used to define the profile of turbine blades. However, this curve gives a feature of global control, which is not proper to a supersonic impulse turbine blade. Thus, a blade design method is developed by using B-spline curve so that local control is possible to obtain an optimized blade section. To design a Curtis turbine blade section systematically, the blade section has been changed by varying three design parameters using central composite design method. Flow analyses have been carried out for the blade sections, and the effects of design parameters are evaluated.

  • PDF

Controlling the Horseshoe Vortex by Leading-Edge Chamfer at a Generic Wing-Body Junction (단순 날개-몸체 접합부에서의 앞전 모서리 홈에 의한 말굽와류 제어)

  • Cho, Jong-Jae;Kim, Kui-Soon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.26-34
    • /
    • 2009
  • Secondary flow losses can be as high as 30~50% of the total aerodynamic losses for a turbo-machinery blade or stator row. These are important part for improving a turbine efficiency. Therefore, many studies have been performed to decrease the secondary flow losses. The present study deals with the chamfered leading-edge at a generic wing-body junction to decrease the horseshoe vortex, one of factors to generate the secondary flow losses, and investigates the vortex generation and the characteristics of the horseshoe vortex with the chamfered height, and depth of the chamfer by using $FLUENT^{TM}$. It was found that the total pressure loss for the best case can be decreased about 1.55% compare to the baseline case.

Developing the flow quality in an wing-body junction flow by the optimizing method (최적화 기법을 이용한 일반적인 날개 형상에서의 유동특성 향상)

  • Cho, Jong-Jae;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.303-307
    • /
    • 2009
  • Secondary flow losses can be as high as $30{\sim}50%$ of the total aerodynamic losses generated in the cascade of a turbine. Therefore, these are important part for improving a turbine efficiency. As well, many studies have been performed to decrease the secondary flow losses. The present study deals with the leading edge fences on a wing-body to decrease a horseshoe vortex, one of the factors to generate the secondary flow losses, and optimizes the shape of leading-edge fence with the shape factors, such as the installed height, length, width, and thickness of the fence as the design variables. The study was investigated using $FLUENT^{TM}$ and $iSIGHT^{TM}$. Total pressure loss coefficient was improved about 7.5 % than the baseline case.

  • PDF