• Title/Summary/Keyword: 터빈출력

Search Result 288, Processing Time 0.031 seconds

A Study on Dynamic Matrix Control using Spray and Damper to Once-through Boiler Steam Temperature (스프레이와 댐퍼를 이용한 관류 보일러 스팀 온도의 (2X2) 동역학 행렬 제어에 관한 연구)

  • Kim, Woo-Hun;Moon, Un-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.91-97
    • /
    • 2010
  • In this paper, we present simulation results of Dynamic Matrix Control (DMC) to a Once-through boiler steam temperature. In order to control the steam temperatures, we choose spray and damper as two input variables. Then, the step response model is generated for the two major output variables by step test. After that, on-line optimization is performed using $(2\times2)$ step response model. Proposed controller is applied to the APESS (Doosan company's boiler model simulator) and the simulation results show satisfactory performance of proposed control.

Maximum Output Power Control for Stand-Alone Wind Power Generation System Using Cage-Type Induction Generators (농형 유도발전기를 이용한 독립형 풍력발전시스템의 최대출력제어)

  • 김형균;이동춘;석줄기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.73-80
    • /
    • 2004
  • In this paper, a maximum output power control of stand-alone cage-type induction generator systems for wind power generation is proposed. The induction generator is operated in a vector-controlled mode, which is excited with d-axis current and of which torque is controlled with q-axis current. The generator speed is controlled by this torque, along which speed the generator produces the maximum output power. The generated power charges the battery bank for energy storage through an ac/dc PWM converter. The proposed scheme has been verified for the wind turbine simulator system which consists of M-G set.

A Study on Dynamic Performance and Response of Turbo Shaft Engine for SUAV (스마트 무인항공기용 터보축 엔진의 동적성능과 응답성에 관한 연구)

  • Park J. C.;Lee D. W.;Roh T. S.;Choi D. W.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.201-204
    • /
    • 2004
  • In this study, the GSP and in-house numerical codes have been used for analyses of the on-design, static off-design and dynamic off-design performances. Through the various missions including altitude, velocity, and power variations static engine performance have been investigated. The dynamic engine performances based on these complicated variations have been also analysed. Especially, the power, engine rpm and heat overload characteristics of a turbine have been estimated with the response time through the control of a throttle setting rather than a power setting. It could be applied to the FADEC system as an engine control device.

  • PDF

Analysis of wind farm power prediction sensitivity for wind speed error using LSTM deep learning model (LSTM 딥러닝 신경망 모델을 이용한 풍력발전단지 풍속 오차에 따른 출력 예측 민감도 분석)

  • Minsang Kang;Eunkuk Son;Jinjae Lee;Seungjin Kang
    • Journal of Wind Energy
    • /
    • v.15 no.2
    • /
    • pp.10-22
    • /
    • 2024
  • This research is a comprehensive analysis of wind power prediction sensitivity using a Long Short-Term Memory (LSTM) deep learning neural network model, accounting for the inherent uncertainties in wind speed estimation. Utilizing a year's worth of operational data from an operational wind farm, the study forecasts the power output of both individual wind turbines and the farm collectively. Predictions were made daily at intervals of 10 minutes and 1 hour over a span of three months. The model's forecast accuracy was evaluated by comparing the root mean square error (RMSE), normalized RMSE (NRMSE), and correlation coefficients with actual power output data. Moreover, the research investigated how inaccuracies in wind speed inputs affect the power prediction sensitivity of the model. By simulating wind speed errors within a normal distribution range of 1% to 15%, the study analyzed their influence on the accuracy of power predictions. This investigation provided insights into the required wind speed prediction error rate to achieve an 8% power prediction error threshold, meeting the incentive standards for forecasting systems in renewable energy generation.

A Study on the Improvement for Cycle Efficiency of Closed-type OTEC (폐쇄형 해양온도차발전 사이클 효율 향상 방안)

  • Lee, Ho-Saeng;Kim, Hyeon-Ju;Jung, Dong-Ho;Moon, Deok-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.46-52
    • /
    • 2011
  • A study on the improvement for cycle efficiency of closed-type ocean thermal energy conversion (OTEC) was studied to obtain the basic data for the optimal design of cycle. For that, OTEC cycle with a generator, a reheater and a multi-turbine was simulated and analyzed. The basic thermodynamic model for OTEC is Rankine cycle and the surface seawater of $26^{\circ}C$ and deep seawater of $5^{\circ}C$ were used for the heat source of evaporator and condenser, respectively. Ammonia is used as the working fluid. The cycle efficiency increased when generator is added with 0.9 generator effectiveness. When the reheater and multi-turbine are applied in the basic cycle, the cycle efficiency showed 3.14% and the capacity of heat exchanger decreased for same total cycle power. For the OTEC cycle with the generator, the reheater and the multi-turbine showed the highest cycle efficiency and increased the efficiency by more than 6.5% comparing with the basic OTEC cycle.

An Evaluation of Energy Quality for Distributed Powersystem (분산형 발전설비 병열운전 에너지 품질평가)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Yoon, Gi-Gab;Rhim, Sang-Kyu;Choi, In-Kyu
    • Journal of Energy Engineering
    • /
    • v.19 no.1
    • /
    • pp.8-15
    • /
    • 2010
  • As environmental friendly energy system, distributed micro gasturbine is focused on new energy source for overcoming brand new construction area of power generation. This distributed micro gasturbine system has the powerful characteristics as belows; 1) environmental friendly features NOx < 9 ppm, noise < 65 db 2) various fuel flexbility which is used such as natural gas, diesel, low calory new & renewable fuel, kerosene. 3) high specific output power based on small area and is avilable for very easy and compact installation. There are many new installation sites in USA and Japan from 1998. On the other hand the exhisting large power system was constructued by the sea side, this compact power system is now installed by enduser in downtown area and supplying combined heat & power, has the various apllication on-site power generation. In recently, there is the very important issue for new & reliablbe energy development and spreading out. This paper represent as belows for important system characteristics; 1) grid connection modeling 2) system operation characteristics 3) on-site operation result and evaluation output of power quality analysis.

Simulation of an Absorption Power Cycle for Maximizing the Power Output of Low-Temperature Geothermal Power Generation (저온 지열발전의 출력 극대화를 위한 흡수식 동력 사이클의 시뮬레이션)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Yoon, Hyung-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.145-151
    • /
    • 2010
  • In this study, an absorption power cycle, which can be used for a low-temperature heat source driven power cycle such as geothermal power generation, was investigated and optimized in terms of power by the simulation method. A steady-state simulation model was adopted to analyze and optimize its performance. Simulations were carried out for the given heat source and sink inlet temperatures, and the given flow rates were based on the typical power plant thermal-capacitance-rate ratio. The cycle performance was evaluated for two independent variables: the ammonia fraction at the separator inlet and the maximum cycle pressure. Results showed that the absorption power cycle can generate electricity up to about 14 kW per 1 kg/s of heat source when the heat source temperature, heat sink temperature, and thermal-capacitance-rate ratio are $100^{\circ}C$, $20^{\circ}C$, and 5, respectively.

Wind Speed Estimation using Regression Method for Maximum Power Control (리그레션 방법을 이용한 최대출력제어 풍속예측)

  • Ko, SeungYoun;Kim, Ho-Chan;Huh, Jong-Chul;Kang, Min-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.327-333
    • /
    • 2015
  • Wind turbines, in the case of less than rated wind speed, is controlled to achieve maximum power. MPC(Maximun Power Control) method, by controlling the rotational speed of the generator, is a method to achieve maximum power but should know the wind speed. However, for several reasons, there have been proposed methods of estimating the wind speed rather than measuring wind speed. TSR(Tip Speed Ratio) is needed to know to estimate the wind speed. However, a complex interaction formula has to be solved to find a TSR. Therefore, many methods have been suggested to solve a complex interaction formula. In this paper, the new method has been proposed to simplify the complicated interaction formula by using the regression method. Matlab/Simulink is used to simulate and to verify the proposed method.

Design of 3MW class outer rotor type PMSG for wind turbine (풍력 발전용 3MW급 외전형 영구자석 동기발전기 설계)

  • Kim, Taehun;Kim, Geohwa;Kim, Dongeun;Chung, Chinhwa;Park, H.C.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.179.1-179.1
    • /
    • 2010
  • 포항공과대학교 풍력특성화대학원에서는 3MW급 외전형 영구자석 동기발전기 설계를 진행하고 있다. 여기서 외전형이란 RFPM 발전기에서 회전자가 바깥에서 회전하는 형태로 기존의 RFPM 발전기와 비교하여 같은 공극직경에 더 많은 자석을 채택할 수 있고, 회전자와 터빈 블레이드를 직접 연결이 가능하다. 또한, 회전자를 외부에 노출 시킬 수 있으므로 냉각에 유리한 면이 있다. 설계 변수 중 출력과 회전수를 고정시키고 각 극수와 공극 직경, 전압을 변화함에 따른 전기적 특성을 비교하고, 그 중 최적의 모델을 선택한다. 선택된 모델의 전자기장 해석, 손실 계산, 열분석을 수행한다. 본 논문에서는 각 경우에 따른 결과를 비교하고 최적 모델에 대한 해석 결과에 대해 요약한다.

  • PDF

Performance Design Analysis of the Supercritical Pressure Bottoming System of Combined Cycle Power Plants Using Once-Through Steam Generator (관류형 증기발생기를 사용한 복합발전용 초임계압 하부시스템의 성능 설계해석)

  • 양진식;김동섭;노승탁
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1370-1377
    • /
    • 2002
  • This study analyzed the design performance of the bottoming system of combined cycle power plants using a once-through heat recovery steam generator. For a parallel arrangement of the main heater and reheater, parametric analyses were carried out to present the criteria for determining the reheater pressure and the location of the starting point of the reheater in the HRSG. The performance of the bottoming system was presented fer a range from high subcritical to supercritical pressure. The steam turbine power is as high as that of conventional triple-pressure bottoming systems. The serial arrangement of heat exchangers with division of each heater into several segments can achieve similar power level.