• Title/Summary/Keyword: 터빈사이클

Search Result 152, Processing Time 0.022 seconds

Analysis of Design and Part Load Performance of a Modified Regenerative Cycle Gas Turbine (수정된 재생사이클 가스터빈의 설계 및 부분부하 성능해석)

  • Hwang, Sung-Hoon;Kim, Tong-Seop
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.467-472
    • /
    • 2005
  • Characteristics of a Modified regenerative cycle gas turbine has been investigated. In the cycle, the turbine expansion is divided into two parts and the regenerator locates between them. Two types of mechanical design are assumed: two-shaft and single-shaft. In particular, optimal pressure ratio division between the high and low pressure turbines is evaluated for the single shaft configuration. The part load analyses have been carried out with the aid of off-design models. In addition to the general fuel only control, a variable speed control is assumed as the part load operating strategy of the single shaft configuration. Obvious advantage with the alternative cycle is observed in the variable speed operation of the single shaft design.

  • PDF

Web-Based On-Line Thermal Performance Analysis System for Turbine Cycle of Nuclear Power Plant (온라인 웹기반 원전 터빈 사이클 열성능 분석 시스템)

  • Choi KiSang;Choi KwangHee;Ji MoonHak;Hong SeungYeol;Kim SeongKun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.409-416
    • /
    • 2005
  • We need to develop a on-line thermal performance analysis system for nuclear power plant to determine performance status and heat rate of turbine cycle. We have developed PERUPS(PERformance Upgrade System) to aid the effective performance analysis of turbine cycle. Procedures of performance calculation are improved using several adaptations from standard calculation algorithms based on PTC(Performance Test Code). Robustness in the on-line performance analysis is increased by verification & validation scheme for measured input data. The system also provides useful web interfaces for performance analysis such as graphic heat balance of turbine cycle and components, turbine expansion lines, automatic generation of analysis report. The system was successfully applied for YongGwang nuclear plant unit #3,4.

Verification Model of the Feedwater Flow for the Calculation of Corrective Performance of Turbine Cycle (터빈 사이클의 보정 성능 계산을 위한 급수 유량의 검증 모델)

  • Kim, Seong-Kun;Yang, Hac-Jin;Lee, Kang-Hee;Choi, Kwang-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.6
    • /
    • pp.538-544
    • /
    • 2012
  • Analysis of thermal performance is required for the economic operation of turbine cycle of power plant. We developed corrective model of main feed water flow which is the most important parameter for the precise analysis of turbine cycle performance. Classification model for the identification of feed water flow measurement status was applied to increase the suitability of the corrective model. We used neural network and support vector machine to develop estimation model of main feed water flow with more generalization capability. The estimation model can be used practically to evaluate corrective performance of turbine cycle plant.

Performance Analysis of a Reheat-cycle Gas Turbine for Combined Cycle Power Plants Using a Simulation Software for Chemical Process Plants (화학공정 플랜트 해석용 소프트웨어를 이용한 복합화력 발전용 재열 사이클 가스터빈의 성능특성에 관한 연구)

  • Park Min-Ki;Ro Sung-Tack;Sohn Jeong-Lak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.472-479
    • /
    • 2006
  • Recently, various methods have been developed to improve the performance of gas turbines for combined cycle power plants. This paper especially focused on the gas turbine with a reheat process. The purpose of this study is to analyze performance characteristics of a reheat-cycle gas turbine on both a design point and off-design operations. Results of the parametric study of this model show how operating and design parameters influence on the performance of the gas turbine. Moreover, possibilities for the analysis of off-design performance based on a self-generated compressor performance characteristic map are presented.

Thermodynamic Performance Characteristics of Transcritical Organic Rankine Cycle Depending on Source Temperature and Working Fluid (열원온도와 작동유체에 따른 초월임계 유기랭킨사이클의 열역학적 성능 특성)

  • Kim, Kyoung Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.699-707
    • /
    • 2017
  • This study presents a comparative thermodynamic analysis of subcritical and transcritical organic Rankine cycles for the recovery of low-temperature heat sources considering nine substances as the working fluids. The effects of the turbine inlet pressure, source temperature, and working fluid on system performance were all investigated with respect to metrics such as the temperature distribution of the fluids and pinch point in the heat exchanger, mass flow rate, and net power production, as well as the thermal efficiency. Results show that as the turbine inlet pressure increases from the subcritical to the supercritical range, the mismatch between hot and cold streams in the heat exchanger decreases, and the net power production and thermal efficiency increase; however, the turbine size per unit power production decreases.

Cycle Analysis and Experiment for a Small-Scale Organic Rankine Cycle Using a Partially Admitted Axial Turbine (부분분사 축류형 터빈을 이용한 소규모 유기랭킨 사이클의 실험 및 예측에 관한 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.33-41
    • /
    • 2015
  • Organic Rankine cycle (ORC) has been used to generate electrical or mechanical power from low-grade thermal energy. Usually, this thermal energy is not supplied continuously at the constant thermal energy level. In order to optimally utilize fluctuating thermal energy, an axial-type turbine was applied to the expander of ORC and two supersonic nozzle were used to control the mass flow rate. Experiment was conducted with various turbine inlet temperatures (TIT) with the partial admission rate of 16.7 %. The tip diameter of rotor was to be 80 mm. In the cycle analysis, the output power of ORC was predicted with considering the load dissipating the output power produced from the ORC as well as the turbine efficiency. The predicted results showed the same trend as the experimental results, and the experimental results showed that the system efficiency of 2 % was obtained at the TIT of $100^{\circ}C$.

Performance Improvement of Free Power Gas Turbine Type Gas Turbine Engine by Using of a MAT Cycle (MAT사이클을 이용한 분리축 가스터빈 엔진의 성능향상에 관한 연구)

  • 공창덕;김경두;기자영;최인수
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.54-58
    • /
    • 2001
  • In order to Improve the performance of a free power turbine type gas turbine engine by injecting the atomized water into a compressor inlet., a study on Moisture Air Turbine (MAT) cycle was proposed. Compressor work by air-water mixtures in phase change was theoretically considered, and it was found that the water evaporation might reduce the compressor work. Cycle model calculations predicted that power increments of 21.7%, 20.2% and 18.4% by 1.5% water to the air flow rate at the compressor intake with rotational shaft speeds of 1000, 1210, 1350 rps were obtained, and also thermal efficiency due to the reduction of compressor work was improved.

  • PDF

Exergy Analysis of R744 OTEC Power Cycle with Operation Parameters (작동변수에 따른 R744용 해양온도차 발전 사이클의 엑서지 분석)

  • Yoon, Jung-In;Son, Chang-Hyo;Baek, Seung-Moon;Kim, Hyeon-Ju;Lee, Ho-Saeng
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1036-1042
    • /
    • 2012
  • This paper describes an analysis on exergy efficiency of R744 OTEC power system to optimize the design for the operating parameters of this system. The operating parameters considered in this study include subcooling and superheating degree, evaporation and condensation temperature, and turbine and pump efficiency, respectively. The main results are summarized as follows : As the evaporation temperature, superheating degree, and turbine and pump efficiency of R744 OTEC power system increases, the exergy efficiency of this system increases, respectively. But condensation temperature and subcooling degree of R744 OTEC power system increases, the exergy efficiency of this system decreases, respectively. The effect of evaporation temperature and pump efficiency on R744 OTEC power system is the largest and the lowest among operation parameters, respectively. Therefore, the refrigerant temperature in the evaporator must be closely to the surface seawater temperature to enhance the exergy efficiency of R744 OTEC power system.

Exhaust-Gas Heat-Recovery System of Marine Diesel Engine (I) - Energy Efficiency Comparison for Working Fluids of R245fa and Water - (선박용 디젤엔진의 배기가스 열회수 시스템 (I) - R245fa 및 Water 의 작동유체에 대한 에너지효율 비교 -)

  • Choi, Byung-Chul;Kim, Young-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.293-299
    • /
    • 2012
  • The thermodynamic efficiency characteristics of R245fa and water as working fluids have been analyzed for the electricity generation system applying the Rankine cycle to recover the waste heat of the exhaust gas from a diesel engine for the propulsion of a large ship. The theoretical calculation results showed that the cycle, system, and total efficiencies were improved as the turbine inlet pressure was increased for R245fa at a fixed mass flow rate. In addition, the net work rate generated by the Rankine cycle was elevated with increasing turbine inlet pressure. In the case of water, however, the maximum system efficiencies were demonstrated at relatively small ratios of mass flow rate and turbine inlet pressure, respectively, compared to those of R245fa. The optimized values of the net power of the cycle, system efficiency, and total efficiency for water had relatively large values compared to those of R245fa.

Influence of Precooling Cooling Air on the Performance of a Gas Turbine Combined Cycle (냉각공기의 예냉각이 가스터빈 복합발전 성능에 미치는 영향)

  • Kwon, Ik-Hwan;Kang, Do-Won;Kang, Soo-Young;Kim, Tong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.171-179
    • /
    • 2012
  • Cooling of hot sections, especially the turbine nozzle and rotor blades, has a significant impact on gas turbine performance. In this study, the influence of precooling of the cooling air on the performance of gas turbines and their combined cycle plants was investigated. A state-of-the-art F-class gas turbine was selected, and its design performance was deliberately simulated using detailed component models including turbine blade cooling. Off-design analysis was used to simulate changes in the operating conditions and performance of the gas turbines due to precooling of the cooling air. Thermodynamic and aerodynamic models were used to simulate the performance of the cooled nozzle and rotor blade. In the combined cycle plant, the heat rejected from the cooling air was recovered at the bottoming steam cycle to optimize the overall plant performance. With a 200K decrease of all cooling air stream, an almost 1.78% power upgrade due to increase in main gas flow and a 0.70 percent point efficiency decrease due to the fuel flow increase to maintain design turbine inlet temperature were predicted.