• Title/Summary/Keyword: 터보제너레이터

Search Result 9, Processing Time 0.026 seconds

Performance Analysis of a 50㎾ Turbo-Generator Gas Turbine Engine with a Recuperator (리큐퍼레이터를 고려한 50KW급 터보제너레이터 가스터빈 엔진의 성능해석)

  • 김수용;수다레프
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.2
    • /
    • pp.48-55
    • /
    • 1999
  • Performance analysis of a 50KW turbo-generator gas turbine engine with a recuperator was studied. Recuperated cycle has been employed to meet maximum fuel economy and ultra low emissions especially for military and vehicular engines. From thermodynamic stand point, it is known that recuperative cycle can contribute most to enhance thermal cycle efficiency for the Pressure ratios under 10 and of comparatively low turbine inlet temperature. Efficiency of a simple cycle with a recuperator increases relatively about 30% than without one at effectiveness of 0.5. Pressure losses in the heat exchanger less than 5.2% is considered in the design process. A tubular type heat exchanger is selected for this particular engine because it can provide simple construction as well as structural sturdiness and excellent leak tightness.

  • PDF

The Development of the Turbo Generator System with Direct Driving High Speed Generator (고속 발전기 직접 구동 방식의 터보 제너레이터 시스템 개발)

  • 노민식;박승엽
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.6
    • /
    • pp.87-94
    • /
    • 2003
  • This paper presents results of the development of the turbo generator system with structure which is HSG(High Speed Generator) installed directly to gas-turbine engine. Turbo generator with a high speed motor-generator directly has many advantages aspects of weight, size, lubrication system and complexity of the system compared of conventional turbo generator system with a gear box. But because of direct high speed operation of the high speed generator, we have to need stable high speed motor driving algorithm for perfect engine ignition when engine start. Also we have to need the design of the Power conditioning unit(PCU) for converting high speed AC output power to conventional AC power or needed DC power.

A Study of Aerodynamic Design of a Radial Turbine for BOP of MCFC Fuel Cell System (연료전지 BOP용 구심터빈 공력설계에 관한 연구)

  • Choi, Bum-Seog;Ahn, Kook-Young;Park, Moo-Ryong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.531-534
    • /
    • 2006
  • This study is concerned with radial turbine design and performance improvement of a turbo generator system, which is used for maximizing performance of a 250kW MCFC fuel cell system. A preliminary design of a radial turbine has been performed under the thermodynamic and fluid-dynamic conditions determined by a cycle analysis of the MCFC BOP system. Basic demensions are determined by a meanline analysis and calculation of radial variation at the exit of the turbine. The turbine impeller is designed and modified by iterative processes of three dimensional flow analysis.

  • PDF

Hydrogen Peroxide Gas Generator Design and Investigation of Power Measurement Method Utilizing Turbocharger (과산화수소 가스발생기 설계와 터보차저를 이용한 동력 측정 방법 검토)

  • Park, Dae-Jong;An, Sung-Yong;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.41-44
    • /
    • 2008
  • In this paper, the gas generator using hydrogen peroxide catalytic decomposition was designed for turbine generator operation. The gas generator used 90wt% rocket-grade of hydrogen peroxide and manganese dioxide as a catalyst. Turbine generators utilizing gas generators were investigated and the prestudy was prepared using automobile turbocharger instead of turbine generator.

  • PDF

Rotordynamic design of a turbogenerator supported by air foil bearings (공기포일베어링에 지지된 터보제너레이터의 회전체동역학적 설계)

  • Kim, Y.C.;An, K.Y.;Park, M.R.;Park, J.Y.;Choi, B.S.;Lee, A.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.271-276
    • /
    • 2006
  • This paper shows the rotordynamic characteristics of a turbo-generator for a BOP of a fuel cell system. The rotor-bearing system consists of magnetic shaft and compressor-turbine shaft, and the two shafts are connected by spline coupling and supported by oil free air foil bearing. Preliminary design according to several parameter is considered in detail. Static and dynamic characteristics of the AFB are estimated by the soft elasto-hydrodynamic analysis technique and the perturbation method. The results of the natural frequencies, mode shape, and unbalance response analysis are presented.

  • PDF

비활성 가스제너레이터 성능분석

  • 김수용
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.04a
    • /
    • pp.14-14
    • /
    • 1999
  • 비활성 가스제너레이터는 가스터빈 추진기관 및 기타 열기관을 이용하여 연소가 되지 않는 저온의 공기를 생산하는 기계장치를 말하며 이러한 저온의 비활성 기체를 화재 지역에 분사하는 경우 기존의 소방수를 이용한 화재 진압방식보다 매우 효율적으로 화재진압에 사용되어 질 수 있다. 일반적으로 민항기 등의 가스터빈 추진 기관에서 배기되는 기체내에는 터빈입구온도(TIT : Turbine Inlet Temperature)및 초과공기지수(Excess Air Coefficient)에 따라 다르게 나타나지만 TIT가 1500$^{\circ}$K인 경우 약 13-14%정도의 산소가 잔존하는 것으로 알려져 있다. 따라서 본 연구에서는 가스터빈 및 열교환 시스템 그리고 터빈 1단 등의 시스템 조합율을 통하여 대기 중의 기체의 온도를 영하 2$0^{\circ}C$ 및 산소함유량을 약 5%수준까지 낮춤으로서 이를 대형 화재 진압에 사용하기 위한 연구이다. 비활성 가스제너레이터에 사용하는 연료로는 Kerosene 및 CNG(Compressed Natural Gas)등이 사용될 수 있으며, 유량이 8.1kg/sec인 터보축 가스터빈 엔진을 사용하는 경우 18750㎥ 부피의 비활성기체를 생산하는데 Kerosene 연료가 약 1톤(200$ 이하)이 필요한 것으로 계산되며 이에 소요되는 시간도 약 52분에 지나지 않는 것으로 계산되었다. 만일 50kg/sec의 보다 큰 가스터빈 엔진을 사용하는 경우 약 9분 정도가 필요한 것으로 계산되었다. 사용되는 가스터빈은 압축비가 15, 열교환기의 효율이 $\varepsilon$=0. 그리고 최종 터빈 1단의 팽창비가 1.25가 적합한 것으로 계산된다. 연구 분석 결과 기술적 문제점으로는 배기 가스온도가 낮은데 따른 출구 부분의 Bearing, Sealing이 문제가 될 수 있다고 판단되며 배기 가스 자체에 대기 공기중에 함유되어 있던 습기가 얼어붙는(Icing화) 문제가 발생하기 때문에 배기가스의 Icing을 방지하기 위하여 압축기 끝단에서 공기를 추출하여 배기부분에 송출할 필요성이 있는 것으로 판단되었다. 출구가스의 기체 유동속도가 매우 빠르므로 (100-l10m.sec) 이를 완화하기 위한 디퓨저의 설계가 요구된다고 판단된다. 또 연소기 후방에 물을 주입하는 경우 열교환기 및 기타 부분품에 발생할 수 있는 부식 및 열교환 효율 저하도 간과할 수 없는 문제로 파악되었다. 이러한 기술적 문제가 적절히 해결되는 경우 비활성 가스 제너레이터는 민수용으로는 대형 빌딩, 산림, 유조선 등의 화재에 매우 적절히 사용되어 질 수 있을 뿐 아니라 군사적으로도 군사작전 중 및 공군 기지의 화재 그리고 지하벙커에 설치되어 있는 고급 첨단 군사 장비 등의 화재 뿐 아니라 대간첩작전 등에 효과적으로 활용될 수 있을 것으로 판단된다.

  • PDF

The Development of the Turbo-Generator System with direct driving High Speed Generator. (고속 발전기 직접 구동 방식의 터보 제너레이터 시스템 개발)

  • 노민식;권정혁;변지섭
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2769-2772
    • /
    • 2003
  • This paper presents results of the development of the Turbo-generator system with structure which is HSG(High Speed Generator) installed to high speed gas-turbine engine directly. Turbo-generator with high speed motor-generator directly has many advantages aspects of weight, size, lubrication system and complexity of the system compared of conventional turbo-generator system with gear-box. But because of direct high speed operation of the high speed generator, we have to need stable high speed motor driving algorithm for perfect engine ignition when gas turbine starting. Also we have to need design of the PCU(Power Conditioning Unit) for converting high speed AC output power to conventional AC power or needed DC power.

  • PDF

Dynamic Response of 50kW Turbo-Generator with Super Critical Rotor supported on a Squeeze Film Damper- Bearing (스퀴즈필름 댐퍼-베어링에 장착된 50kW 터보 제너레이터 초임계 로터의 동적응답)

  • 최상규;김영철;이동환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.521-527
    • /
    • 2001
  • The dynamic performance analyses and tests for a 50kW turbo-generator (KIMM-TG50) were carried out. The operating concept of this machine is that it gets the initial driving force from the built-in motor-generator until it reaches its self-sustaining speed of 40,000 rpm, and then the driving mode is changed to self-operating mode by the combustor installed between the centrifugal compressor and the turbine. Due to winding mistake of motor-generator, the system could go only up to 22000 rpm by the motor so that high pressure air externally fed into the turbine was utilized to get the system to run up to 62,000 rpm thereafter. The vibration data collected during the tests revealed that the first bending critical speed is in near 5,600 rpm as predicted in the design stage of the rotor-bearing system, and that there were no other identifiable critical speeds up until 62,000 rpm due to high damping from the squeeze film damper-bearings supporting the rotor. This paper presented some of the experimental results along with dynamic performance predictions made in the design stage as a part of progress being made.

  • PDF