• Title/Summary/Keyword: 터널 입구

Search Result 79, Processing Time 0.029 seconds

Analysis for Characteristics Method on Wind Pressure of Trains Crossing in Tunnel (터널내 교행 열차의 풍압에 대한 특성법 해석)

  • Nam, Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.6
    • /
    • pp.454-459
    • /
    • 2013
  • Pressure waves are generated and propagate in a tunnel when train enters tunnel high speed. A compression wave due to the entry of train head propagates along the tunnel and is reflected at tunnel exit as an expansion wave. An expansion wave due to the entry of the train tail propagates along the tunnel and is reflected at tunnel exit as a compression wave. These pressure waves are repeatedly propagated and reflected at the tunnel entrance and exit. Severe pressure changes causes ear-discomfort for passengers in the cabin and micro pressure waves around the tunnel exit. It is necessary to analyze the transient pressure phenomena in tunnels qualitatively and quantitatively, because pressure change rate is considered as one of the major design parameters for optimal tunnel cross sectional area and repeated fatigue force on car body. In this study, we developed a characteristics method based on a fixed mesh system and boundary conditions for crossing trains and analyzed this system using an X-t diagram. The results of the simulation show that offsetting of pressure waves occurs for special entry conditions of a crossing train.

Characteristics Method Analysis of Wind Pressure of Train Running in Tunnel (터널을 주행하는 열차의 풍압에 대한 특성해법 해석)

  • Nam, Seong-Won;Kwon, Hyeok-Bin;Yun, Su-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.436-441
    • /
    • 2012
  • Pressure waves are generated and propagate in tunnel when train enters a tunnel with high speed. Compression wave due to the entry of train head propagates along the tunnel and is reflected at tunnel exit as expansion wave. While expansion wave due to the entry of train tail propagates along the tunnel and is reflected at tunnel exit as compression wave. These pressure waves are repeatedly propagated and reflected at tunnel entrance and exit. Severe pressure change per second causes ear-discomfort for passengers in cabin and micro pressure wave around tunnel exit. It is necessary to analyze the transient pressure phenomena in tunnel qualitatively and quantitatively, because pressure change rate is considered as one of major design parameters for an optimal tunnel cross sectional area and the repeated fatigue force on car body. In this study, we developed the characteristics method analysis based on fixed mesh system and compared with the results of real train test. The results of simulation agreed with that of experiment.

Experimental Study on the Designed Ventilation System Performance at Rescue Station in Tunnel Fire (터널 내 화재발생시 구난역 내의 설계된 환기 시스템 성능에 대한 실험적 연구)

  • Kim, Dong-Woon;Lee, Seong-Hyeok;Ryou, Hong-Sun;Yoon, Sung-Wook
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • In this study, the l/35 reduced-scale model experiment were conducted to investigate designed ventilation system performance at rescue station in tunnel fire. A model tunnel with 2 mm thick of steel, 10 m long, 0.19 m high and 0.26m was made by using Froude number scaling law. The cross-passages installing escape door at the center. were connected between accident tunnel and rescue tunnel. The n-heptane pool fire, $4cm\times4cm$, with heat release rate 698.97W were used as fire source. The fire source was located in the center and portal of accident tunnel as Worst case.. An operating ventilation system extracted smoke amount of 0.015 cms. The smoke temperature and carbon monoxide. concentration in cross-passage were measured to verify designed ventilation system. The results showed that, in center fire case without ventilation in accident tunnel, smoke did not propagated to rescue station. In portal tire case, smoke spreaded to rescue station without ventilation. But smoke did not propagated to rescue station with designed ventilation.

Effect of Tunnel Entrance Shape of High Speed Train on Aerodynamic Characteristics and Entry Compression Wave (고속전철의 터널입구 형상이 공력특성 및 터널입구 압축파에 미치는 영향)

  • Jeong, Soo-Jin;Kim, Woo-Seung;Zhu, Ming
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.111-118
    • /
    • 2004
  • The work presented in this paper concerns the aerodynamic characteristics and compression wave generated in a tunnel when a high speed train enters it. A large number of solutions have been proposed to reduce the amplitude of the pressure gradient in tunnels and some of the most efficient solutions consist of (a) addition ofa blind hood, (b) addition of inclined part at the entrance, and (c) holes in the ceiling of the tunnel. These are numerically studied by using the three-dimensional unsteady compressible Euler equation solver with ALE, CFD code, based on FEM method. Computational results showed that the smaller inclined angle leads to the lower pressure gradient of compression wave front. This study indicated that the most efficient slant angle is in the range from $30^{\circ}$ to $50^{\circ}$. The maximum pressure gradient is reduced by $26.81\%$ for the inclined angle of $30^{\circ}$ as compared to vertical entry. Results also showed that maximum pressure gradient can be reduced by $15.94\%$ in blind hood entry as compared to $30^{\circ}$ inclined tunnel entry. Furthermore, the present analysis showed that inclined slant angle has little effect on aerodynamic drag. Comparison of the pressure gradient between the inclined tunnel hood and the vertical entry with air vent holes indicated that the optimum inclined tunnel hood is much more effective way in reducing pressure gradient and increasing the pressure rise time.

A Study on Thermodynamics Specific Estimation of Inner Part of Tunnel Structure used FDS (FDS를 사용한 터널구조물 내부 열역학적 특성예측에 관한 연구)

  • Lee, Young-Jae;Ahn, Chan-Sole;Kim, Heung-Yeol;Kim, Hyung-Jun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.540-547
    • /
    • 2009
  • 국내도로터널 화재안전성을 확보하기 위하여 FDS를 이용하여 ISO, 도로터널 방재시설기준, Runner Hammer 터널기준의 시나리오에 따라 콘크리트 터널구조물의 내부 열역학적 특성을 예측하였다. 화재로 인한 터널내부의 온도분포를 측정하기 위하여 화염원으로부터 터널입구 방향으로 5m 마다 터널 단면의 온도분포를 추출하였고, 터널의 중심을 지나는 길이방향 단면의 온도분포를 해석하였다. 해석결과 온도는 500${\sim}$950$^{\circ}C$까지의 분포를 나타내었고 가장 높은 온도영향을 받은 Runner Hammer 터널기준의 내부 열환경 조건에서는 터널 단면이 모두 화염에 직접적으로 노출 때문에 단면전체가 800${\sim}$950$^{\circ}C$까지 상승하였다. 특히 상부부분은 900$^{\circ}C$ 이상의 고온에 장시간 노출되고 있어 깊이 50mm 지점의 온도가 250$^{\circ}C$까지 상승하였다.

  • PDF