• Title/Summary/Keyword: 터널 공기압력

Search Result 53, Processing Time 0.021 seconds

A numerical study on the pressure relief by a vertical shaft in a high speed railway tunnel (고속열차의 터널 진입시 수직갱의 압력저감효과에 대한 수치해석 연구)

  • Kim, Hyo-Geun;Seo, Sang-Yeon;Ha, Hee-Sang;Kwon, Hyeok-Bin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.6
    • /
    • pp.559-570
    • /
    • 2013
  • High speed railway can transport large quantity of people and commodities in a short time and has become one of the most desirable and environmentally friendly transportation. However, it is hard to have a complicated route for high speed railways, construction of tunnels is essential to pass through a mountain area. When a high speed train enters a tunnel, pressure wave is created in a tunnel and the wave causes micro pressure wave and discomfort to passengers. In order to alleviate pressure wave in a tunnel, constructing a vertical shaft is one of the most efficient ways. This study represents a numerical analysis module, which takes into account the effect of a vertical shaft in a tunnel. The module can be used in a numerical program (TTMA) specialized for aerodynamics in a tunnel, and it was validated by comparing numerical results with various measurements in Emmequerung tunnel and results from numerical analysis using Fluent.

Two-dimensional numerical simulation of flow around a High Speed Train using EDISON_CFD (EDISON_CFD를 이용한 고속열차의 운용환경에 따른 2차원 전산유동해석)

  • ;Jo, Yeong-Hui;Jang, Gyeong-Sik
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.371-376
    • /
    • 2013
  • 고속열차의 운행속도가 증가함에 따라 이전보다 공기역학적인 요소들의 중요성이 커지고 있다. 열차와 터널의 형상설계뿐만 아니라 주변 환경을 위해 고속 주행하는 열차 주변의 유동장을 이해할 필요성이 있다. 본 연구에서는 고속 주행으로 인해 열차 주변에 발생하는 열차풍을 분석하여 선로 주변에 작용하는 풍하중을 계산하였고, 터널 주행 시 발생하는 압력변동과 객차 연결부의 비정상 열린 공동 유동을 살펴보았다. 그 결과 2차원 해석의 정량적 한계점이 나타났지만, 정성적인 경향은 선행연구와 잘 일치함을 확인할 수 있었다. 따라서 고속열차 주변의 공기역학적 특성의 이해와 열차 및 터널의 형상 변화에 따른 상대적인 비교를 위해서는 EDISON_CFD를 이용한 2차원 해석이 유용함을 볼 수 있었다.

  • PDF

Assessment of the Pressure Transient Inside the Passenger Cabin of High-speed Train Using Computational Fluid Dynamics (전산유체역학을 이용한 고속철도차량 객실 내 압력변동 평가)

  • Kwon, Hyeok-Bin;Nam, Sung-Won;Kwak, Jong-Hyun
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.65-71
    • /
    • 2009
  • The pressure transient inside the passenger cabin of high-speed train has been assessed using computational fluid dynamics (CFD) based on the axi-symmetric Navier-Stokes equation. The pressure change inside a train have been calculated using first order difference approximation based on a linear equation between the pressure change ratio inside a train and the pressure difference of inside and outside of the train. The numerical results show that the pressure change inside the new Korean high-seed train passing through a tunnel of Seoul-Busan high-speed line at the speed of 330km/h satisfied well the Korean regulation for pressure change inside a passenger cabin if the train is satisfying the train specification for airtightness required by the regulation.

A numerical study on the ventilation characteristics of rainfall in road tunnel (강우변화를 고려한 도로터널의 환기특성에 관한 수치해석)

  • Lee, Ho-Hyung;Lee, Seung-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.341-351
    • /
    • 2015
  • When rainfall occurred on road tunnel, that is likely to have influence upon ventilation force in the tunnels but the tunnels ventilation system did not consider factors of rainfall. Thus, this study investigated effects of rainfall upon ventilation force in the tunnels at no rainfall and changing of rainfall by 3 dimensional numerical method. Flow rate into road tunnels decreased as many as 52.34% at rainfall of 150 mm/hr, and pressure drop of road tunnel between entrance and exit decreased as many as 22.22%, so that rainfall had influence upon ventilation force in the tunnel. The number of necessary jet fan in road tunnels is 12 at no rainfall but, when rainfall of 80 mm/hr on road tunnels, the number of necessary jet fan in road tunnels is 16, when rainfall of 150 mm/hr on road tunnels, the number of necessary jet fan in road tunnels is 17. So, factor of rainfall should be considered at estimation of ventilation system of road tunnel.

Wave Impact Pressures Acting on the Underwater Tunnel Bulkhead under Construction - Numerical Analysis and Hydraulic Model Experiment - (시공 중 수중터널 벌크헤드에 작용하는 충격쇄파압 - 수치해석 및 수리모형실험 -)

  • Kim, Sun-Sin;An, Dong-Hyuk;Chun, In-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.2
    • /
    • pp.139-146
    • /
    • 2011
  • The breaking wave pressure occurs when a plunging breaker instantaneously impinges on structural surface, and appears differently depending on whether or not to form air pockets at the instant of contact. The Wagner type normally forms a single pressure peak at the contact spot due to the direct collision of water volume to the structure whereas in the Bagnold type the time lagged oscillation of the air pocket causes pressure peaks even at areas away from the spot. In the present study, the Bagnold's impact pressure is numerically and experimentally investigated for the bulkhead of an underwater tunnel under construction which is subjected to nearby breaking waves. A numerical solver of Navier-Stokes equations was applied to reproduce the breaking waves near a bulkhead, and the results showed the Bagnold's impact pressure occurring on the back (land side) face of the bulkhead. The existence of the impact pressure was also verified by a hydraulic model testing, and it was found that the experimental results well conformed to their numerical counterparts.

A study on the characteristics for aerodynamics at high speed in railway tunnels - focused on the micro pressure wave (고속주행시 철도터널내 공기압 특성에 관한 기초연구 - 미기압(MPW)을 중심으로)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.249-260
    • /
    • 2014
  • When a train enters the tunnel at high speed, the pressure wave occurs. When this pressure wave reaches at the exit of tunnel, some are either emitted to the outside or reflected in tunnel by the form of expansion wave. The wave emitted to the outside forms the impulsive pressure wave. This wave is called 'Micro Pressure Wave'. The micro pressure wave generates noise and vibration around a exit portal of tunnel. When it becomes worse, it causes anxiety for residents and damage to windows. Thus, it requires a counterplan and prediction about the micro pressure wave for high speed railway construction. In this paper, the effects of train head nose and tunnel portal shape were investigated by model test, measurement for the micro pressure wave at the operating tunnel as well as numerical analysis for the gradient of pressure wave in the tunnel. As results, a method for predicting the intensity of the micro pressure wave is suggested and then the intensity of the micro pressure wave is analyzed by the tunnel length and the cross-sectional area.

NUMERICAL SIMULATION OF PRESSURE CHANGE INSIDE CABIN OF A TRAIN PASSING THROUGH A TUNNEL (터널을 통과하는 열차의 객실 내 압력 변동 해석)

  • Kwon, H.B.;Yun, S.H.;Nam, S.W.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.23-28
    • /
    • 2012
  • The pressure transient inside the passenger cabin of high-speed train has been simulated using computational fluid dynamics(CFD) based on the axi-symmetric Navier-Stokes equation. The pressure change inside a train have been calculated using first order difference approximation based on a linear equation between the pressure change ratio inside a train and the pressure difference of inside and outside of the train. The numerical results have been assessed for the KTX train passing through a 9km long tunnel of Wonju-Kangneung line at the speed of 250km/h assuming that the train is satisfying the train specification for airtightness required by the regulation.

Numerical Simulation of Pressure Change inside Cabin of a Train Passing through a Tunnel (터널을 통과하는 열차의 객실 내 압력 변동 해석)

  • Kwon, H.B.;Yoon, S.H.;Nam, S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.337-342
    • /
    • 2011
  • The pressure transient inside the passenger cabin of high-speed train has been simulated using computational fluid dynamics(CFD) based on the axi-symmetric Navier-Stokes equation. The pressure change inside a train have been calculated using first order difference approximation based on a linear equation between the pressure change ratio inside a train and the pressure difference of inside and outside of the train. The numerical results have been assessed for the KTX train passing through a 9km long tunnel of Wonju-Kangneung line at the speed of 250km/h assuming that the train is satisfying the train specification for airtightness required by the regulation.

  • PDF

An experimental study on increased pressure in Shinwol rainwater storage and drainage system by undular bore (불규칙 단파에 의한 신월 빗물저류배수시설 내 압력상승에 관한 실험 연구)

  • Oh, Jun Oh;Park, Jae Hyeon;Jun, Sang Mi
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.4
    • /
    • pp.303-312
    • /
    • 2020
  • An underground deep tunnel system is a facility in form of a reverse siphon for an under flood defense structure. In this study, the 'Shinwol rainwater storage and drainage system', which is under construction for the first time in South Korea, in order to confirm the effects of undular bore and pressurized air on the hydraulic stability of the facility in various flood scenarios a hydraulic model experiment was performed. As a result of this study, it was analyzed that the undular bore generated downstream pushed the pressurized air collected in the facility while moving upstream, and the pressure inside the pipe increased at this time. It was analyzed that the pressure during the passage of the undular bore was greater than the sum of the static pressure and dynamic pressure at the time and overflow occurred when the cross-sectional size of the pressurized air was more than 40% of the cross sectional area of the tunnel. It is determined that this is correlated with the volume of pressurized air collected in the facility, and it is determined that it is necessary to study the relationship between velocity of undular bore and the volume of pressurized air in the future.

Model Test for the Determination of Distances between Jet-fans and Analysis of Recirculation (제트팬 설치 간격과 재유입 현상 분석을 위한 모형실험)

  • Kweon, Oh-Sang;Yoon, Chan-Hoon;Yoon, Sung-Wook;Kim, Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.335-344
    • /
    • 2006
  • The domestic standards which used the standards of Road Association of Japan standards presents the distances of between jet-fans by the caliber of jet-fan. However, the Permanent International Association of Road Congress (PIARC) encourages it to be ten times a diameter of the tunnel. The distance of jet-fans installed in bases of two standards differs as much as two times, as so the proper basis after analysis of internal air current is needed since such difference can lead to disadvantage for selection of ventilation configuration. Based on Froude modeling theory, 1/40 scale acrylic model of a tunnel (215mm in diameter and 6.9m in length) and jet-fan (26.3mm and 31.6mm in caliber) was made for the measurement of changes in pressure and velocity due to the extension of tunnel for analysis of internal air current. And we measured the changes in pressure of surroundings of a jet-fan for confirmation of recirculation due to the exterior airs when the jet-fan is on. The results of the model test show that internal air current was not influenced by the caliber of jet-fan and its changes in pressure and velocity were stable in the point where it was nine times of diameter of the tunnel. Also the recirculation when the jet-fan is on could be verified. According to such results, in the cases of installing jet-fan in tunnels, the distances between jet-fans needs to be more than nine times the diameter.