• Title/Summary/Keyword: 터널안전

Search Result 922, Processing Time 0.021 seconds

Case Studies and Future Prospect of Using Bulk Emulsion (에멀젼계 벌크폭약을 이용한 시공사례와 향후 전망)

  • Kim, Hee-Do;Choi, Sung-Hyun
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.64-76
    • /
    • 2008
  • Bulk Emulsion blasts using mechanized charging system, which is generally used in foreign countries, have recently introduced and gradually increased in Korea. The Bulk Emulsion are safe and able to increase the charging density for improvement of fragmentation and advancement especially in tunneling, and minimizing environmental problem. Because of less toxic gas generation, the explosives are called, namely ech-friendly products. There are two kinds of Bulk Emulsion; one is for open cut and the other is for tunneling. According to features of blast sites and its purpose, the compositions are different, but the principle is the same. In this study, trial blasts using Bulk Emulsion for tunneling had executed at 10 sites in Korea. The major result of the major job-sites is the following. First of all, compared with cartridge explosive, Bulk Emulsion was able to increase its charging density up to $35{\sim}60%$, to decrease the blast holes to approximately $10{\sim}30%$ down, and the advancement was improved up to $8{\sim}20%$ and also 30% up in its fragmentation. Toxic gas production after cartridge blasting showed 34.44ppm of its CO. Bulk Emulsion, however, showed 20.13ppm, which was 58.45% production of the cartridge explosive, and NOx was below 2ppm. The mechanized charging system of Bulk Emulsion should be applied to large sized tunnel blasting, long advanced tunnel which can secure the advancement of over $4{\sim}5m$, and the sites required finishing rapidly.

A study on damage mechanism of transition section in cut and cover tunnel using 3 dimensional numerical analysis (3차원 수치해석을 통한 개착터널내 단면변화구간의 손상미케니즘 연구)

  • Park, Jae-Young;Son, Jeong-Hun;Park, Kwang-Lim;Oh, Young-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.6
    • /
    • pp.653-666
    • /
    • 2012
  • This study made progress about Demage Mechanism of Transition Section in Cut and Cover Tunnel. For this study, Inspection and test was carried out about Transition Section. After this process, Numerical Analysis was accomplished by 2D, 3D. A result of inspection and test, It couldn't find the reason why the upper slab Demage was detected. So 2D Numerical Analysis was conducted. It was analyzed that the Safety Factor(1.0) was satisfied in 2D. But, the result of 3D Numerical Analysis, The reason was found that the Demage on upper slab was caused by moment change. The Moment was changed by column interval transition. For Retrofitting, Column was added under slab in tunnel. It was found that the addition column decreased upper slab deformation. After this study, It could be find that are important 3D Numerical Analysis as well as 2D Numerical Analysis in case of Transition Section. This Study can help developing construction and maintenance about Tunnel. Finally, It's going to study Retrofitting plans which have minimum influence of Transition Section in Cut and Cover Tunnel.

Variation of Earth Pressure Acting on Cut-and-Cover Tunnel Lining with Settlement of Backfill (되메움토의 침하에 따른 개착식 터널 라이닝에 작용하는 토압의 변화)

  • Bautista F.E.;Park Lee-Keun;Im Jong-Chul;Lee Young-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.27-40
    • /
    • 2006
  • Damage of cut-and-cover tunnel lining can be attributed to physical and mechanical factors. Physical factors include material property, reinforcement corrosion, etc. while mechanical factors include underground water pressure, vehicle loads, etc. This study is limited to the modeling of rigid circular cut and cover tunnel constructed at a depth of $1.0{\sim}1.5D$ in loose sandy ground and subjected to a vibration frequency of 100 Hz. In this study, only damages due to mechanical factors in the form of additional loads were considered. Among the different types of additional, excessive earth pressure acting on the cut-and-cover tunnel lining is considered as one of the major factors that induce deformation and damage of tunnels after the construction is completed. Excessive earth pressure may be attributed to insufficient compaction, consolidation due to self-weight of backfill soil, precipitation and vibration caused by traffic. Laboratory tunnel model tests were performed in order to determine the earth pressure acting on the tunnel lining and to investigate the applicability of existing earth pressure formulas. Based on the difference in the monitored and computed earth pressure, a factor of safety was recommended. Soil deformation mechanism around the tunnel was also presented using the picture analysis method.

Development Plan of Design for Safety in Construction (설계안전성 검토(DfS) 발전방안)

  • Shin, Ju Yeoul
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.351-356
    • /
    • 2017
  • This study introduces the current status of the design for safety(DfS) introduced as one of the owner - centered construction site safety management plan, and presents the problems and the improvement plan. The design for safety has been shifting from the construction management-oriented safety management to the owner-centered safety management system, The owner has to make the design considering the safety from the design stage centered on the owner. The owner has to review and approve the adequacy of the safety-conscious design and The risk factors that can not be eliminated during design are the system to prevent the disaster at the construction site by planning to eliminate the risk factor when writing the safety management plan that is made at the construction stage. The design for safety system implemented from May 2016 will be further developed to prevent the risk of safety accidents that may occur in construction sites, contributing greatly to the reduction of construction accident. In addition, it suggests ways to develop more efficient and convenient system through continuous hazard finding and system improvement.

A numerical study on the 3-Dimensional shape characteristics of small underground cavities (소규모 지하공동 3차원 형상 특성을 반영한 수치해석에 관한 연구)

  • An, Joon-Sang;Kang, Kyung-Nam;Son, Ki-Il;Kim, Woo-Seok;Kim, Byung-Chan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.787-807
    • /
    • 2018
  • When conducting the underground safety impact assessment under the special law in Korea, it is essential to investigate the occurrence of underground cavities. When underground cavities were discovered, the underground safety was assessed through numerical analysis. The previous study has suggested the stability evaluation based on the factor of safety by changing the 2D shape of the small underground cavity. In this study, the effects of small underground cavities considering 3D shapes were examined using a continuum analysis program and compared with the 2D results presented in previous study. If the 3-Dimensional shape of the underground cavity is found close to the sphere type, it would be reasonable to evaluate the factor of safety by the shear strength reduction method regardless of the size and position of the cavity. If a high-aspect ratio underground cavity with a depth of 2 m or more from the ground surface and an aspect ratio (a/b) of 2.0 or more is in the vertical direction, not only the factor of safety but the failure mode shape should be cautions in the stability evaluation using the shear strength reduction method. The results of this study are expected to be basic data on underground safety impact assessment.

A study on the evaluation of fire safety according to the ventilation mode in a train fire at the subway platform (지하철 승강장에서 열차 화재시 제연모드에 따른 화재 안전성 평가 연구)

  • Ryu, Ji-Oh;Lee, Hu-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.293-310
    • /
    • 2020
  • The purpose of this study is to present the most effective smoke exhaust mode by comparing the quantitatively evaluated risks according to the smoke exhaust mode when a train fire occurs in a subway platform. Therefore, applying the typical subway platform as a model, train fire scenarios are developed with the evacuation start time and location of the fire train for each exhaust mode. The fire accident rates (F) are calculated and the number of fatalities (N) was quantitatively estimated by fire analysis and evacuation analysis for each scenario. In addition, the F/N curve compared with the social risk assessment criteria and the following conclusions were obtained. In the event of a train fire at the subway station platform, the evacuation must start up within 600 s in maximum to ensure the evacuees' safety. To secure evacuation safety, it is advantageous to operate the HVAC system of the platform in the air-supply mode at station without TVF. Comparing the F/N curve for each exhaust mode with the social risk criteria, it turned out that the risk significantly exceeds the social risk criteria in case of no mechanical ventilation. As a result, this paper shows that the ventilation mode in which TVF are exhausted and HVAC system is operated in the pressurized mode are the most effective smoke exhaust mode for ensuring evacuation safety.

The ground behaviour during excavations and tunnelling (정보화시공을 위한 지반굴착에 따른 지반거동의 이해)

  • Kim, Sang-Hwan;Bang, Gyu-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.27-39
    • /
    • 2005
  • 목적구조물의 건설을 위한 지반굴착시 지반거동에 대하여 보다 현실적이고 개념적으로 제시하여 정보화시공시 보다 안전시공을 위하여 지분굴착에 따른 지반거동에 대한 이해를 도모하고 신속한 문제해결 기술에 활용되도록 하였다. 굴착시에 대하여서는 개착 뿐만 아니라 터널의 굴착도 포함하여 지반거동을 이해하기위한 기본개념과 아울러 지반거동에 대한 정성적인 분석기법에 대하여서도 제시하였다.

  • PDF

Design Technology Development of High Speed Railway System (고속전철시스템 설계기술개발 대책)

  • 송달호
    • Journal of the KSME
    • /
    • v.34 no.6
    • /
    • pp.422-474
    • /
    • 1994
  • 지하철 과천선의 사고는 인재라고는 하나 근본적으로 기술개발을 소홀히 했기 때문이라고 생각 한다. 300km/h의 경부 고속전철은 터널, 통신, 신호, 기계, 전기 등의 첨단 복합기술로서 이들의 통합에 의한 엔지니어링의 산물이며, 지하철보다는 차원이 다른 고도의 설계.엔지니어링 기술을 요구한다. 또한 고속으로 주행하는 데 따른 안전한 열차의 제동은 물론, 사고에 대비하기 위한 열차제어 시스템 등에 의한 모든 열차운영은 전적으로 기술적인 문제와 결부되어 있다. 이러한 고속전철기술의 자립을 이룩하려면 정부의 고속전철기술에 대한 정책전략과 이를 실현하려는 의지에서 출발하는 점을 다시 한 번 강조한다. 지금부터 한 세대가 지나기 전에 우리가 독자적 으로 설계, 제작, 건설한 고속전철이 부산에서 서울을 거쳐 신의주 및 원산을 달리는 시대가 오 기를 기대한다.

  • PDF

An Implement TLS VPN Client for Gooroom OS (국산 개방형 구름 OS를 위한 TLS VPN Client)

  • Park, J.P.
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.452-454
    • /
    • 2018
  • 본 논문에서는 국내 OS시장의 편중화 현상을 해결하기 위해 개발된 개방형 OS 인 구름 플랫폼에서 동작 할 수 있는 가상사설망(Virtual Private Network, VPN) Client를 암호화 기술, 터널링 기술을 적용한 사용자 인증 기반의 안전한 통신망을 제공하는 목적에서 TLS[1](Transport Layer Security,TLS 1.2) 프로토콜을 사용하여 원천기술을 개발하며 이의 고도화를 추구한다.

  • PDF

Monitoring management for safely construction of deep shield tunnel (대심도 해저 쉴드터널 안전시공을 위한 계측관리)

  • 유길환;김영수;황대영;곽정민;정성교
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.319-326
    • /
    • 2002
  • During the construction period of submarine shield tunnel, which is built firstly in very soft marine clay layer 40m deep in Korea, wide range problems were encountered such as safe launching against high earth pressure at shield entrance, technique of shield face pressure control when passing through complex multi-layered soils This paper introduces successful construction practice through development of state-of-the-art construction method and field monitoring.

  • PDF