• 제목/요약/키워드: 터널보강공법

검색결과 170건 처리시간 0.026초

Study on the Geological Characteristics and Slope Stability of Nammyeon reservoir in Bonghwa County, Kyungpook Province (경북 봉화군 남면저수지 일대의 지질특성 및 비탈면 안정성 검토)

  • Ihm, Myeong Hyeok;Park, Jin Young
    • Tunnel and Underground Space
    • /
    • 제27권2호
    • /
    • pp.77-88
    • /
    • 2017
  • The geology of the study area is composed mainly of conglomerate, sandstone, and shale and basalt. It is a rock that has been observed to move relatively recently through various brittle deformation and various stress fields during the recent period. To form a gentle terrain with severe crushing. The slope is located at the intersection of the Taegok Fault in the north-northeast direction and the Bukok Fault in the western north-west direction, and many faults, fault zones and fracture zones of various sizes are developed in the rock bed. In this study, the geological characteristics of the slope are investigated and the countermeasure method is suggested. It is suggested that periodical measurement and analysis should be performed by installing a measuring instrument according to each structure for safety management of the surrounding roads and grounds during construction or reinforcement by the countermeasure method for the slope of the study area.

A Study of the Optimum Installation Number of Face Bolts Using Laboratory Tests and Numerical Analysis (실내실험 및 수치해석을 이용한 막장볼트의 최적 타설 개수에 관한 연구)

  • Seo, Kyoung-Won;Kazuo, Nishimurn;Kim, Chang-Young
    • Tunnel and Underground Space
    • /
    • 제16권6호
    • /
    • pp.467-475
    • /
    • 2006
  • The use of face bolt method has been increasing abroad recently. Hence, many tests and measurements are being conducted and reported. Also, it is well hewn that determination of the installation number of foe bolts in the design stage is very difficult due to difference of the ground condition and the type of a bolt to be used. First of all, the type, the number, etc. of bolts used in various tunnel construction sites, investigated, are analyzed. The relationship between bolt and ground condition could not be found because bolts have been used with the other support methods in many cases. In the laboratory test and numerical analysis based on the site investigation, the behavior of ground and pipes installed on the tunnel face to support has been examined. Especially, the installed number is focused on. According to the result of tests, the surface settlement and the axial displacement of the face decrease exponentially as the number of installed bolts increases.

A Study on Efficiency Improvement through Productivity Analysis Based on TBM Operation Data (TBM공법 적용 현장별 생산성 분석을 통한 효율성 개선 방안)

  • Park, Hong Tae;Song, Young Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제30권1D호
    • /
    • pp.71-77
    • /
    • 2010
  • This study presented the operation method through of productivity on eight analysis work items (TBM boring, cutter check and exchange, TBM maintenance, succeeding facilities, reinforcement in tunnel, operation alternation, a tram car) which have developed equipment at WRITH with TBM a waterway tunnel works. It was inquired lose time with analyzed result by work items and removed lose time. It was analyzed TBM boring length, TBM boring length percentage and TBM boring length time. This study analyzed TBM operation utility factor of a foreign work with TBM operation boring length percentage, a monthly average boring length, pure boring length percentage etc. and assumed a monthly average boring length and a monthly average boring length of rise forecast. Based on analyzed Data, TBM boring has been forecasted propriety pure boring length at compressive strength $675{\sim}1662kgf/cm^2$.

Three-Dimensional Limit Equilibrium Stability Analysis of Spile-Reinforced Shallow Tunnel

    • Geotechnical Engineering
    • /
    • 제13권3호
    • /
    • pp.101-122
    • /
    • 1997
  • A spiting reinforcement system is composed of a series of radially installed reinforcing spites along the perimeter of the tunnel opening ahead of excavation. The reinforcing spill network is extended into the in-situ soil mass both radially and longitudinally The sailing reinforcement system has been successfully used for the construction of underground openings to reinforce weak rock formations on several occasions. The application of this spiting reinforcement system is currently extended to soft ground tunneling in limited occasions because of lack of reliable analysis and design methods. A method of threetimensional limit equilibrium stability analysis of the smile-reinforced shallow tunnel in soft ground is presented. The shape of the potential failure wedge for the case of smile-reinforced shallow tunnel is assumed on the basis of the results of three dimensional finite element analyses. A criterion to differentiate the spill-reinforced shallow tunnel from the smile-reinforced deep tunnel is also formulated, where the tunnel depth, soil type, geometry of the tunnel and reinforcing spites, together with soil arching effects, are considered. To examine the suitability of the proposed method of threedimensional stability analysis in practice, overall stability of the spill-reinforced shallow tunnel at facing is evaluated, and the predicted safety factors are compared with results from twotimensional analyses. Using the proposed method of threetimensional limit equilibrium stability analysis of the smile-reinforced shallow tunnel in soft ground, a parametric study is also made to investigate the effects of various design parameters such as tunnel depth, smile length and wadial spill spacing. With slight modifications the analytical method of threeiimensional stability analysis proposed may also be extended for the analysis and design of steel pipe reinforced multi -step grouting technique frequently used as a supplementary reinforcing method in soft ground tunnel construction.

  • PDF

A Study on the Excavation of the Center Wall for the Evacuation Passageway in the Operating 2-Arch Tunnel (운행 중인 2-Arch 터널의 피난연결통로 신설을 위한 중앙벽체 굴착에 관한 연구)

  • Lee, Jong-Hyun
    • Journal of the Society of Disaster Information
    • /
    • 제17권3호
    • /
    • pp.454-464
    • /
    • 2021
  • Purpose: There is a need to construct an evacuation passageway for the 2-Arch tunnel, which has been constructed and is in operation. Therefore, it aims to analyze tunnel and center wall behaviour and stability due to excavation of the center wall. Method: We describe the theoretical background of 2-Arch tunnel and evacuation passageway, and focused on analyzing the behaviour of tunnel and wall using 3-dimensional finite element analysis. Parametric analysis according to rock rating was performed with various ground conditions, and the displacement and stress of the center wall were intensively analyzed. Result: With the center wall excavation, the largest amount of settlement was shown in the center of the opening, and the stress was greatest during the first excavation. In addition, it was shown that stress concentration occurred at the top of both openings, and stability reviews considering the concept of allowable stress showed that it exceeded the allowable stress. Conclusion: Although the displacement of the tunnel has secured stability within the allowable standard, the generated stress is found to exceed the allowable standard, so it is necessary to prevent sudden stress release by applying appropriate reinforcement methods during construction.

A Study on Bond Strength of Cement-Based Filler and Flexural Strength of RC Beam Strengthened with GFRP by Filler Thickness (시멘트계 충진제의 접착 성능 및 보강 두께에 따른 GFRP 보강 RC보의 휨 성능에 대한 연구)

  • Choi, Ha-Jin;Choi, Young-Woong;Park, Jong-Chul;Jung, Si-Young;Choi, Oan-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제14권5호
    • /
    • pp.144-152
    • /
    • 2010
  • In this study, cement-based filler is used as an adhesive instead of organic adhesive, epoxy because there were problems under wet condition. First, the bond strength of cement-based filler was measured and the result was satisfied with KS F 4716. However, in case of wet condition, bond strength of epoxy adhesive decreased $0.73N/mm^2$ in 7 days and $0.84N/mm^2$ in 14 days from pilot test. This implies that there would be a problem on reinforced concrete structure in wet condition, such as tunnel and sewage box. In the second experiment, the flexural strength of RC beams with GFRP using different thickness of cement-based filler was investigated, and the result was indicated 113%, 66%, 75% increase in 10mm, 20mm, 30mm thickness, respectively. From the result, it was known that 10mm filler thickness produces stable bond performance.

A study on the state of the art on the construction and the new technology of the underground structure(underpass, underground passageways) (지하구조물(지하차도, 지하통로)건설 현황 및 관련 신기술 개발동향 연구)

  • Kim, Hyung-Tae;Han, Man-Yop;Son, Yeun-Jin;Han, Rok-Hee;Jeong, Ji-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.891-894
    • /
    • 2008
  • This study was performed to investigate how to design, where to construct, why to degrade, what plan to use systematically the underground structures such as underpass, underground passageways. About 50% of the underground structures are located on Seoul, Kyungi-Do. In design of the underground structures such as underpass, underground passageways, the required conditions are defined. And also in construction stage, the conditions of soil, required structure depth, site characteristics, reasonable construction method, are investigated. In the selection of details for underground structure, the items mainly considered, are the wall and column type, the sidewalk type, anchoring-system type, the water-proofing method, entranc shape. The reason and the adequate measures for the degradation of concrete structure are also investigated. The initial cracking properties due to the thermal characteristic are considered. The state of the art report on the new technologies are reviewed. The recent project for the systematically application to the underground structures is reviewed.

  • PDF

Evaluation of mechanical characteristics of marine clay by thawing after artificial ground freezing method (인공동결공법 적용 후 융해에 따른 해성 점토지반의 역학적 특성 평가)

  • Choi, Hyun-Jun;Lee, Dongseop;Lee, Hyobum;Son, Young-Jin;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제21권1호
    • /
    • pp.31-48
    • /
    • 2019
  • The artificial ground freezing (AGF) method is a groundwater cutoff and/or ground reinforcement method suitable for constructing underground structures in soft ground and urban areas. The AGF method conducts a freezing process by employing a refrigerant circulating through a set of embedded freezing pipes to form frozen walls serving as excavation supports and/or cutoff walls. However, thermal expansion of the pore water during freezing may cause excessive deformation of the ground. On the other hand, as the frozen soil is thawed after completion of the construction, mechanical characteristics of the thawed soil are changed due to the plastic deformation of the ground and the rearrangement of soil fabric. This paper performed a field experiment to evaluate the freezing rate of marine clay in the application of the AGF method. The field experiment was carried out by circulating liquid nitrogen, which is a cryogenic refrigerant, through one freezing pipe installed at a depth of 3.2 m in the ground. Also, a piezo-cone penetration test (CPTu) and a lateral load test (LLT) were performed on the marine clay before and after application of the AGF method to evaluate a change in strength and stiffness of it, which was induced by freezing-thawing. The experimental results indicate that about 11.9 tons of liquid nitrogen were consumed for 3.5 days to form a cylindrical frozen body with a volume of about $2.12m^3$. In addition, the strength and stiffness of the ground were reduced by 48.5% and 22.7%, respectively, after a freezing-thawing cycle.

A Case Study on the Ground Reinforcement Method and Effect of the Failed Tunnel (터널붕괴지반의 보강공법 및 효과에 대한 사례연구)

  • Cho, Hyun;Lim, Jae-Seung;Chung, Yoon-Young;Choi, Sang-Yeul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.293-300
    • /
    • 1999
  • The maintenance for the stability of tunnel, especially on downtown area, careful check must be considered during construction stage and after. Moreover we have to achieve the stability of tunnel by ground improvement and reinforcement when ground condition is bad or tunnel failures under the various ground conditions. In this paper, it is presented the case of tunnel failure and the state of restoration by ground reinforcements at seoul subway $\bigcirc$-$\bigcirc$ construction site. For the purpose of ground reinforcement, first, curtain wall was established by chemical grouting. Secondly, cement milk grouting was carried by upper part of tunnel crown. Also Boreholes loading test and tunnel monitoring were carried by in failure site for the long term stability of tunnel.

  • PDF

Development of the Fuzzy Expert System for the Reinforcement of Tunels during Construction (터널 시공 중 보강공법 선전용 퍼지 전문가 시스템 개발)

  • 김창용;박치현;배규진;홍성완;오명렬
    • Journal of the Korean Geotechnical Society
    • /
    • 제16권6호
    • /
    • pp.127-139
    • /
    • 2000
  • In the study, an expert system was developed to predict the safety of tunnel and select proper tunnel reinforcement system using fuzzy quantification theory and fuzzy inference rule based on tunnel information database, For this development, many tunnelling sites were investigated and the applied countermeasures were studied after building tunnel database. There will be benefit for the deciding tunnel reinforcement method in the case of poor ground condition. The expert system developed in the study has two main parts, pre-module and post-module. Pre-module is used to decide input items of tunnel information based on the tunnel face mapping information which can be easily obtained in in-situ site. Then, using fuzzy quantification theory II, fuzzy membership function is composed and tunnel safety level is inferred through this membership function. Post-module is used to infer the applicability of each reinforcement methods according to the face level. The result of the predicted reinforcement system level was similar to measured ones. In-situ data were obtained in three tunnel sites including subway tunnel under Han River. Therefore, this system will be helpful to make the mose of in-situ data available and suggest proper applicability of tunnel reinforcement system to development more resonable tunnel support method without dependance of some experienced experts opinions.

  • PDF