• Title/Summary/Keyword: 탱크 컨테이너

Search Result 14, Processing Time 0.02 seconds

A Study on the Static Structural Strength Evaluation of 53ft Liquefied Natural Gas Tank Container (53ft 액화천연가스 탱크 컨테이너의 정적 구조 강도 평가에 관한 연구)

  • Chunsik Shim;Hokyung Kim;Daseul Jeong;Deokyeon Lee;Kangho Kim;Minsuk Kim;Sungkuk Wi;Heechang Noh;Youngbin Kwon;Changseok Hong;Kim Byeonghwa;Cheonghak Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.4
    • /
    • pp.278-287
    • /
    • 2023
  • This study aims to analyze and evaluate the structural strength of a 53ft Liquefied Natural Gas (LNG) tank container according to International Organization for Standardization (ISO) 1496-3, amidst growing global demand for LNG transportation. The research was conducted in two main stages: structural analysis using Finite Element Analysis (FEA) under various load conditions, and structural strength tests following ISO 1496-3 test procedures. The structural analysis was performed considering different loading conditions to assess the structural safety of the tank container. Calculated stresses were compared with allowable stress under specified load conditions. The structural strength tests were conducted at Mokpo National University's Subsea Umbilical cable Riser Flowline R&D Center, which provided a suitable testing environment. The study found that calculated stresses met the allowable stress under specified load conditions, confirming the structural safety of the tank container. Additionally, the maximum deformation and permanent deformation satisfied the design criteria for all test cases, indicating the container's structural strength meets requirements. The research also contributed valuable data for future structural strength tests of similar products and facilitated the development of safe and efficient LNG transportation solutions by developing effective test procedures in accordance with ISO 1496-3 standards.

A Study of Thermo-structural Analysis and Fatigue Analysis for Independent Type-B LNG Fuel Tank (독립형 B타입 LNG 연료 탱크의 열-구조 연성해석 및 피로 해석에 관한 연구)

  • Kim, Tae-Wook;Kim, Jong-Min;Kim, Jong-Hwan;Lee, Jeong-Ho;Park, Seong-Bo;Lee, Sung-Min;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.410-419
    • /
    • 2016
  • With the aim of reducing greenhouse gas emissions by 20 percent by 2020 and by 50 percent by 2050 from their 2005 level, International Maritime Organization (IMO) regulated the emissions of SOx and NOx by setting the emission control area in 2012. Since these environmental regulations have been reinforced, demands for the LNG fuel ships are expected to increase dramatically. Accordingly, the worldwide shipbuilding companies spur the development of the LNG fueled ships. Therefore, it is essential to carry out the research on the development of LNG fuel tank, which is one of the important components of the LNG fuel supply system. In this study, the deliberate finite element analysis of type-B LNG fuel tank for 10,000 TEU containership was carried out to evaluate structural safety and provide the process for analyzing stress levels and evaluating fatigue life of target structural. In particular, thermo-structural analysis and fatigue analysis were carried out using the databases on materials and structures of LNG fuel tank.

Estimation of explosion risk potential in fuel gas supply systems for LNG fuelled ships (액화 천연 가스 연료 선박의 연료 공급 장치 폭발 잠재 위험 분석)

  • Lee, Sangick
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.918-922
    • /
    • 2015
  • As international environmental regulations for pollutant and greenhouse gas emissions discharged from ships are being reinforced, it is drawing attention to use LNG as ship fuel. This paper compares the explosion risk potential in the LNG fuel gas supply systems of two types used in marine LNG fuelled vessels. By selecting 8500 TEU class container ships as target, LNG storage tank was designed and pressure conditions were assumed for the use of each fuel supply type. The leak hole sizes were divided into three categories, and the leak frequencies for each category were estimated. The sizes of the representative leak holes and release rates were estimated. The release rate and the leak frequency showed an inverse relationship. The pump type fuel gas supply system showed high leak frequency, and the pressure type fuel gas supply system showed high release rate. Computational fluid dynamics simulation was applied to perform a comparative analysis of the explosion risk potential of each fuel supply system.

Design and Implementation of Web Service S/W Platform for Remote Monitoring and Control (원격 감시제어를 위한 웹 서비스 S/W 플랫폼 설계 및 구현)

  • Lee, Tae-Hee;Kim, Joo-Man
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.12
    • /
    • pp.245-253
    • /
    • 2007
  • In this paper, we propose an effective web service software platform for remote monitoring and control. We removed the servlet container for better web service performance so as to improve the gSOAP processing which is an essential element of web service implementation. Furthermore, we designed the web service server/client software platform which can be applied to robot or ubiquitous sensor applications. For validation of this study we tested it by manufacturing robot hardware for monitoring control which combined tanks and sensors on a LDS4000 engine board mounted with a PXA270 processor. The practical excellence and the efficiency of the result of this study was validated by the comparison of gSOAP message exchange load between the web service client application and the conventional remote monitoring control technique through a web server.