• Title/Summary/Keyword: 탱크 슬로싱

Search Result 68, Processing Time 0.027 seconds

Sloshing Reduction Optimization of Storage Tank Using Evolutionary Method (진화적 기법을 이용한 유체저장탱크의 슬로싱 저감 최적화)

  • 김현수;이영신;김승중;김영완
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.410-415
    • /
    • 2004
  • The oscillation of the fluid caused by external forces is call ed sloshing, which occurs in moving vehicles with contained liquid masses, such as trucks, railroad cars, aircraft, and liquid rocket. This sloshing effect could be a severe problem in vehicle stability and control. In this study, the optimization design technique for reduction of the sloshing using evolutionary method is suggested. Two evolutionary methods are employed, respectively the artificial neural network(ANN) and genetic algorithm. An artificial neural network is used for the analysis of sloshing and genetic algorithm is adopted as optimization algorithm. As a result of optimization design, the optimized size and location of the baffle is presented

  • PDF

Numerical simulation of hydroelastic effects of sloshing phenomena in a rectangular tank (사각탱크내의 슬로싱 현상에 기인한 벽면운동에 대한 수치모사)

  • Ha, Minho;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.534-537
    • /
    • 2012
  • Hydroelastic effects on sloshing phenomena in a rectangular tank are numerically investigated. The dimension of the tank is $1000mm{\times}600mm$, and the filling ratio of water is 20% of tank height. One of the side walls of tank is assumed to be flexible. The tank is excited into sway motion with amplitude of 100mm and frequency of 0.53Hz that is first natural frequency of water inside the tank. Prediction results for time histories of pressure and displacement of flexible and rigid walls are compared to quantitatively assess hydroelastic effects on sloshing phenomena.

  • PDF

A Sloshing Analysis of Storage Tank using Multi-layer Perceptron Artificial Neural Network (다층퍼셉트론 인공신경망을 이용한 저장탱크 슬로싱해석)

  • Kim, Hyun-Soo;Lee, Young-Shin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.491-496
    • /
    • 2004
  • The oscillation of the fluid caused by external forces is called sloshing, which occurs in moving vehicles with contained liquid masses, such as aircraft. cars and liquid rocket and so on. This sloshing effect could be a severe problem in vehicle stability and control. So, various baffles are used in order to reduce the sloshing. The Lagrangian, Eulerian and ALE numerical method is widely used on the analysis of sloshing presently. But, these numerical methods are needed so many CPU time. In this study, for the reduction of the sloshing analysis time, me multi.layer perceptron artificial neural network is introduced and analysis results are presented.

  • PDF

Estimation of Sloshing Natural Periods in Liquid Cargo Tanks (액체 화물창내의 SLOSHING 고유주기 산정에 관한 연구)

  • 신장용;최경식;강신영;김현수
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.93-104
    • /
    • 1994
  • Recently in the design of super tankers or LNG carriers which transport a large amount of liquid in the cargo holds, the structural damage due to liquid sloshing becomes an important problem. The impact pressure from sloshing is most violent when the liquid motion of a partially filled tank is in resonance with the motion of a ship. In this paper the sloshing natural periods in liquid cargo tanks are estimated for partially filled tanks with various geometries. Especially the sloshing periods of baffled tanks which are often installed to reduce liquid motion and sloshing forces are calculated. A variational method is adopted to analyze the baffled tank of arbitrary filling depth of liquid. In this approach the liquid domain is divided into several subdomains in which the analytic solutions are potential energy are calculated from the velocity potentials in eachsubdomain. By minimizing the Hamilton's functional, the sloshing natural periods are estimated and the results are compared with experimental and numerical results.

  • PDF

Characteristics of sloshing load and flow inside a tank with cylinder structures (실린더 구조물을 설치한 탱크 내부의 슬로싱 하중과 유동 특성)

  • Ki Jong Kim;Hyun-Duk Seo;Daegyoum Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2023
  • Sloshing of the fluid having a free surface produces an impact force on a tank wall subjected to external excitation. This paper investigates the effect of cylindrical structures in a rectangular sloshing tank under translational harmonic excitations. By varying the number of installed cylinders in the tank, the characteristics of the free-surface deformation is experimentally observed, and the peak pressure on the tank wall is extracted by threshold values. To predict the peak pressure, the numerical simulation is also conducted using smoothed particle hydrodynamics (SPH), and the peak values are compared with the experimental results. Furthermore, pressure and velocity fields in the tank and free-surface shape are analyzed at the moment of impact.

Analysis of droplet formation under sloshing phenomena in liquid fuel tank (액체 연료 탱크 내 슬로싱 현상에서의 액적 형성 분석)

  • Sungwoo Park;Jinyul Hwang
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.102-110
    • /
    • 2023
  • With the global shift from a carbon-based economy to a hydrogen-based economy, understanding the sloshing phenomenon and its impact on boil-off rate (BOR) in liquid hydrogen (LH2) tank trailers is crucial. Here, we analyze the primary breakup process under sloshing phenomena in a liquid fuel tank. We observe the growth of multiple holes on the sheet-like structures and the formation of ligament structures reminiscent of jet atomization. Through the extraction of three-dimensional liquid regions, we analyze the geometrical characteristics of these regions, enabling the classification of sheets, ligaments, and droplets. The present findings could contribute to understanding the breakup mechanism and hold potential for the development of strategies aimed at minimizing BOR.

Development of Digital Filter and Damper for Improving Accuracy of Measurement of Application Amount of Disinfectants of Disinfection Vehicle (방역차량의 약제 살포량 측정 정확성 개선을 위한 디지털 필터와 댐퍼 개발)

  • Baek, Seunghwan;Park, Donghyeok;Park, Hana;Lee, Chungu;Rhee, Joongyong
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.148-148
    • /
    • 2017
  • 방역 차량의 약액탱크, 차량의 연료, 워셔액 등의 탱크 내부에는 잔존량을 측정하기 위해 기둥과 floating box로 이루어진 부력식 수위레벨센서가 사용되고 있으나 액체레벨에 따라 float이 상하로 움직이는 측정원리상 차량 주행 중 정확성이 매우 떨어진다(Park et al. 2016). 방역차량이 주행 중 분사할 때, 슬로싱 현상과 방역소독기의 노즐과 펌프에서 발생하는 진동으로 인해 기존의 부력식 센서를 이용한 약제 살포량 측정방법은 정확성이 매우 떨어지는 경향이 있다. 본 연구의 목적은 방역차량이 주행하면서 분사할 때, 수위레벨 센서를 이용한 약제살포량 측정의 정확성을 개선하는 것으로 디지털 칼만필터, Low pass filter와 댐퍼를 제작하여 이용했다. 본 연구에서는 압력식 레벨센서를 이용해 약액탱크의 높이당 단면적과 수위를 측정하여 약제살포량을 계산했다. Python 2.7을 이용해 디지털 칼만필터와 Low pass filter(LPF)를 구현하였으며 3D프린터를 이용해 댐퍼를 제작했다. 실내에서 슬로싱 현상을 인공적으로 만들어 필터와 댐퍼의 수위 측정 정확성 개선효과를 확인 후 실제 방역차량에 부착하여 비포장도로에서 주행하면서 분사할 때 필터와 댐퍼의 효과를 확인하였다. 댐퍼의 공극률(p)을 바꿔가며 수위 측정 정확성 개선효과를 확인하였다. 실내, 현장 실험 결과, 칼만필터가 LPF보다 개선효과가 더 크지만 데이터 50개 처리에 1.71초의 시간지연이 발생했다. 댐퍼는 수위센서를 고정시키고 유체의 운동을 방해하여 이상치와 큰 오차제거에 효과적이었다. 칼만필터와 댐퍼를 동시에 이용할 경우, 수위 측정정확성 $R^2$는 0.9985, 0.9981로 ${\pm}4.3cm$의 범위내에서 수위를 측정할 수 있었다. 필터의 시간지연과 수위 측정정확성을 고려하여 데이터 기록간격을 3초로 설정하면 ${\pm}3cm$이내에서 약탱크 내 수위를 측정할 수 있었다. 공극률(p)가 0.294, 0.291, 0.17에서 측정정확성 $R^2$는 각각 0.9897, 0.9858, 0.9872 로 p가 0.294에서 개선효과가 가장 좋았으나 개선효과의 차이는 크지 않았다.

  • PDF

A Study on Thermal Performance Evaluation Procedures of LNG Fuel Tank (LNG 연료탱크의 단열성능 평가 절차에 관한 연구)

  • Cho, Sang-Hoon;Sim, Myung-Ji;Jung, Young-Jun;Kim, Ik-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.45-52
    • /
    • 2018
  • As guidelines for exhaust gases of ship are reinforced by the International Maritime Organization, the necessity for LNG fuelled ship is emerging. The relevant research is actively progressing to develop technologies and promote commercialization. When the residual quantity of LNG fuel tank is less than 70% by consuming fuel during operation, sloshing should be considered. We applied the Type C LNG fuel tank because medium sized LNG fuelled ships are difficult to equip with re-liquefaction system. Structural integrity and thermal performance are very important, especially in LNG fuel tanks that apply to LNG fuelled ship. Through this study, we proposed evaluation procedure of thermal performance for the Type C LNG tank, and verified the validity and effectiveness of BOR(Boil-Off Rate) test Procedure by comparing and analyzing changes in temperature, pressure, BOG(Boil-Off Gas).

A NUMERICAL ANALYSIS OF THE SLOSHING IN A TANK WITH PLATE/POROUS BAFFLES (판형 및 다공형 배플을 포함한 탱크 내 슬로싱에 대한 유동해석)

  • Lee, Sang-Hyuk;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.215-222
    • /
    • 2009
  • In the present study, a numerical analysis on the sloshing in a tank with the harmonic motion was investigated. A VOF method was used for two-phase flows inside the sloshing tank and a source term of the momentum equation was applied for the harmonic motion. This numerical method was verified by comparing its results with the available experimental data. The sloshing in a tank causes the instability of the fluid flows and the fluctuation of the impact pressure on the tank. By these phenomena of the tank sloshing, the sloshing problems such as the failure and the noise of system can be generated. For the reduction of these sloshing problems, the various baffles such as the horizontal/vertical plate baffles and the porous baffles inside the tank are installed. With the installations of these baffles, the characteristics of the liquid behavior in the sloshing tank, the impact pressure on the wall, the amplitude of the free surface near the wall and the sloshing noise were numerically analyzed.

  • PDF

Particle-based Simulation for Sloshing in a Rectangular Tank (사각 탱크 내 슬로싱 해석을 위한 입자법 시뮬레이션)

  • Hwang, Sung-Chul;Lee, Byung-Hyuk;Park, Jong-Chun;Sung, Hong-Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.31-38
    • /
    • 2010
  • The Floating storage and re-gasification unit (FSRU), which has large cargo storage tanks, is a floating liquefied natural gas (LNG) import terminal. The sloshing motion in tanks that are partially filled with LNG can cause impact pressure on the containment system and affect the global motion of the FSRU. Therefore, the accurate prediction of sloshing motion has been a significant issue in the offshore gas production industry. In this paper, a particle method based on the moving particle semi-implicit (MPS) method proposed by Koshizuka and Oka (1996) has been modified to predict sloshing motion accurately in a rectangular tank with the filling ratio of water. The simulation results, including the violent sloshing of the fluid, were validated by comparison with the original MPS method.