• Title/Summary/Keyword: 태풍의 발생 수

Search Result 641, Processing Time 0.041 seconds

The Changes of Coastal Water Level due to the Development of Mokpo Harbor and Construction of Daebul Industrial Complex (목포항 개발 및 대불 산업단지 조성에 따른 연안해역 해면변화)

  • 정명선;이중우
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1991.06a
    • /
    • pp.37-44
    • /
    • 1991
  • 영산강 하구언 방조제의 건설로 인한 항만 및 이의 인접해역 해면의 변화는 예상한 바 있으며 실제 여러개소에서 월 2회정도의 주기로 목포 구항부근 상업지역에서 해면상승에 따라 주기적으로 침수되는 현상이 나타나고 있다 목포항의 영산강 하구언 방조제 조성으로 인한 조류성분중 최고기록을 가진 수로에서는 6kts 정도로 감소된 것으로 보고되고 있으나 주위자연환경 변화에 따른 수면 상승 및 해수면의 주기적인 변화 등에 대한 상세한 언급 및 깊이 있는 분석은 회피되어왔다. 수자원의 효율적관리를 위해 하구언 방조제는 이미 건설되었고 앞으로 대규모의 항만개발과 대불산업단지조성을 위해 추가 3개의 만입해안해역에 댐으로 해역을 막아 매립공사를 추진하고 있다 그러나 이 지역에 대한 분석은 타당성의 여부만을 강조한 상업적 용역이 이루어지고 있고 장래 개발에 대해 학술적이고 실질적인 문제점 추출과 해결방아네 대해서는 무시하거나 경시한 바가 많다 더구나 태풍 저기압 등과 같은 자연재해를 고려한 분석은 시도되지 못하고 있다 따라서 개발전후의 현상에 대한 상세한 자료 및 현장 조사와 극한 상태를 고려하여 개발에 따른 수위상승 부진동, 조류 수질등 이해역의 변화요소를 수집하고 분석하며 과학적 접근방법에 기초를 둔 수치모델의 실험을 포함하여 현장관측 및 측정자료를 검증하는 것이 필수적이라고 사료되어 종합분석의 한단계로 여기서는 하구언 및 하구간척(Land Reclamatic of Estuary barren)으로 해역축소에 따른 해면변화의 실제현상을 조사하여 정리하고 이를 수치모델을 통해 시뮬레이션하여 보았다 이는 종합개발의 좋은 기초자료로 이용됨은 물론이로 이지역의 개발에 기여할 것으로본다.적절하게 가정된 지반의 응력-변형률 관계와 간극수압특성에 의하여 고려되었다. 그 결과 응력 및 변위가 심하게 발생하는 지역은 황색 점토층이었으며 이로부터 황색 점토층에서 부터 파괴면이 생성되어 다른 지역으로 전파되었음을 유추할 수 있었다.form trap with 2.88[eV] deep of injected space charge from the chathode in the crystaline regions. The origin of ${\alpha}$$_2$ peak was regarded as the detrapping process of ions trapped with 0.9[eV] deep originated from impurity-ion remained in the specimen during production process of the material, in the crystalline regions. The origin of ${\beta}$ peak was concluded to be due to the depolarization process of "C=0"dipole with the activation energy of 0.75[eV] in the amorphous regions. The origin of ${\gamma}$ peak was responsible to the process combined with the depolarization of "CH$_3$", chain segment, with the activation energy of ca

  • PDF

Classification by Erosion Shapes and Estimation of Sea-cliff Erosion Rates through Field Survey in Dundu-ri, Anmyeondo in Korea's Western Coast (현장 조사를 통한 안면도 둔두리 해식애의 침식율 산정 및 침식형태 분류)

  • KIM, Jang-soo;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.3
    • /
    • pp.41-53
    • /
    • 2013
  • This research was carried out to classify erosion shapes and sea-cliff erosion rates were estimated through periodic field survey in Dundu-ri, Anmyeondo. Based on the results of field measurements using the datum-point, the annual sea-cliff erosion rate was estimated about 25~102cm/yr by point. The erosion rate gradually increases from spring to summer, but tends to decrease slightly in autumn. Specifically, the erosion rate between June and July indicated a rather decreasing trend, but showed a sharp increase between July and September. This was attributed to erosion that proceeds more rapidly than during other periods due to severe rainstorms in summer that had a direct impact on the study area as well as storm surges caused by hurricanes. Afterwards, the sea-cliff erosion rate gradually decreased in autumn, but reflected an increasing trend again from December to January. This was attributed to the mechanical weathering that actively progresses as bed rocks on the sea-cliff undergo repeated freezing and thawing in winter. The seacliff in Dundu-ri is divided into three types according to the erosion shape. First, Type A is observed in the sea-cliff composed of the same bed rocks and hard rock stratum. Second, Type B is found in the sea-cliff with a relatively gentler slope compared to Type A, since weathering material including soil is formed on the surface of the sea-cliff consisting of the same bed rocks and hard rock stratum. Lastly, Type C is observed in the sea-cliff where hard rock stratum is mixed with soft rock stratum. In this case, the soft rock stratum slumps and erodes first by precipitation and wave energy, followed by additional slumping of the exposed hard rock stratum.

A Study on Water Surface Detection Algorithm using Sentinel-1 Satellite Imagery (Sentinel-1 위성영상을 이용한 수표면 면적 추정 알고리즘에 관한 연구)

  • Lee, Dalgeun;Cheon, Eun Ji;Yun, Hyewon;Lee, Mi Hee
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.809-818
    • /
    • 2019
  • The Republic of Korea is very vulnerable to damage from storm and flood due to the rainfall phenomenon in summer and the topography of the narrow peninsula. The damage is recently getting worse because of the concentration rainfall. The accurate damage information production and analysis is required to prepare for future disaster. In this study, we analyzed the water surface area changes of Byeokjeong, Sajeom, Subu and Boryeong using Sentinel-1 satellite imagery. The surface area of the Sentinel-1 satellite, taken from May 2015 to August 2019, was preprocessed using RTC and image binarization using Otsu. The water surface area of reservoir was compared with the storage capacity from WAMIS and RIMS. As a result, Subu and Boryeong showed strong correlations of 0.850 and 0.941, respectively, and Byeokjeong and Sajeom showed the normal correlation of 0.651 and 0.657. Thus, SAR satellite imagery can be used to objective data as disaster management.

A Study on the Evaluation of Cargo Securing Safety for Car ferry Ships Using Wave Height Information (해상 파고 정보를 활용한 카페리 선박의 고박안전성 평가에 관한 연구)

  • Yu, Yong-Ung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.457-464
    • /
    • 2021
  • Cargo securing safety, which is one factor for the safe operation of car ferry ships, has been applied since 2015 and evaluated by comparing the hull motion and securing load capacity generated by waves. To ensure the safe operation of the 3700 ton class car ferry, it is important to analyze the hull acceleration motion based on the sea wave information of the navigation area to determine the cargo securing load that can prevent the movement of cargo. In this study, the meteorological information of three wave buoys installed in Busan and Jeju area was analyzed for the past 5 years. In addition, the hull acceleration was measured in actual sea conditions and compared to that of numerical simulations. Under the condition of a significant wave height of 2.5 m from Feb to Mar, except typhoon seasons, the lateral acceleration was observed to be 1.5 m/s2 in real ship measuring and 1.8 m/s2 in numerical calculation. It was analyzed to be less than 40% under general weather conditions compared to the high wave warning using an approximate formula for estimating the hull motion by wave height. The cargo securing safety proposed in this study will be widely used based on the actual measuring acceleration with the sea wave height.

A Possible Relation of Pacific Decadal Oscillation with Weakened Tropical Cyclone Activity over South Korea (한국에 영향을 미치는 약해진 열대저기압 활동과 태평양 10년 주기 진동과의 관계)

  • Chang, Minhee;Park, Doo-Sun R.;Kim, Dasol;Park, Tae-Won
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • Although tropical cyclones with wind speeds weaker than 17 ms-1 (weak tropical cyclones: WTCs) can cause significant damage, particularly over the Seoul metropolitan area, only a few studies have focused on WTC activity over South Korea. In this study, we found that WTC activity is likely associated with the Pacific Decadal Oscillation (PDO). During the negative phases of the PDO, landfall frequency of WTCs increased significantly compared to the positive phases at 95% confidence level. When related to the negative phases of the PDO, a positive relative vorticity anomaly is found in the northern sector of the western North Pacific while a negative relative vorticity anomaly and enhanced vertical wind shear prevail in the southern sector of the WNP. These factors are favorable for the northward shift of the genesis location of tropical cyclones on average, thereby reducing the total lifetime of WTCs. Moreover, a high-pressure anomaly over the Japanese islands would shift a tropical cyclone track westward in addition to the landfall location. Consequently, the effects of the topographical friction and the Yellow Sea Bottom Cold Water on a tropical cyclone may increase. These conditions could result in a weaker lifetime maximum intensity and landfall intensity, ultimately resulting in WTCs becoming more frequent over South Korea during the negative phases of the PDO.

Dam Break Analysis with HEC-HMS and HEC-RAS (HEC-HMS와 HEC-RAS를 이용한 댐 붕괴 해석)

  • Hong, Seung-Jin;Kim, Soo-Jun;Kim, Hung-Soo;Kyung, Min-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4B
    • /
    • pp.347-356
    • /
    • 2009
  • This study simulates the dam break situation by a probable maximum precipitation of Soyang-River Dam using HEC-HMS model and HEC-RAS model and compares the simulated results. The probable maximum precipitation was calculated using the flood event of the typhoon Rusa occurred in 2002 and using the mean areal precipitation of the Gangreung region and the moisture maximization method. The estimated probable maximum precipitations were compared for the duration of 6, 12, 18, and 24 hrs and were used as input data for the HEC-HMS model. Moreover, the inflow data calculated by HEC-HMS were utilized as ones for HEC-RAS, and then unsteady flow analysis was conducted. The two models were used for the dam break analysis with the same conditions and the peak flow estimated by HEC-HMS was larger than that of the HEC-RAS model. The applicability of two models was performed from the dam break analysis then we found that we could simulate more realistic peak flow by HEC-RAS than HEC-HMS. However, when we need more fast simulation results we could use HEC-HMS. Therefore, we may need the guidelines for the different utilizations with different purposes of two models. Furthermore, since the two models still include uncertainties, it is important to establish more detailed topographical factors and data reflecting actual rivers.

Effect of Wind Load on Pile Foundation Stability in Solar Power Facilities on Slopes (풍하중이 경사지 태양광 발전시설의 기초 안정성에 미치는 영향 분석)

  • Woo, Jong-Won;Yu, Jeong-Yeon;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.47-60
    • /
    • 2023
  • At present, in South Korea, there is a growing concern regarding solar power facilities installed on slopes because they are prone to damage caused by natural disasters, such as heavy rainfall and typhoons. Each year, these solar power facilities experience soil erosion due to heavy rainfall and foundation damage or detachment caused by strong wind loads. Despite these challenges, the interaction between the ground and structures is not adequately considered. Current analyses primarily focus on the structural stability under external loads; the overall facility site's stability-excluding the solar structures-in relation to its surrounding slopes is neglected. Therefore, in this study, we use finite-difference method analysis to simulate the behavior of the foundation and piles to assess changes in lateral displacement and bending stress in piles, as well as the safety factor of sloped terrains, in response to various influencing factors, such as pile diameter, spacing between piles, pile-embedding depth, wind loads, and dry and wet conditions. The analysis results indicate that pile spacing and wind loads significantly influence lateral displacement and bending stress in piles, whereas pile-embedding depth strongly influences the safety factor of sloped terrains. Moreover, we found that under certain conditions, the design criteria in domestic standards may not be met.

Dynamics of Phosphorus-Turbid Water Outflow and Limno-Hydrological Effects on Hypolimnetic Effluents Discharging by Hydropower Electric Generation in a Large Dam Reservoir (Daecheong), Korea (대청호 발전방류수의 인·탁수 배출 역동성과 육수·수문학적 영향)

  • Shin, Jae-Ki;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • Daecheong Reservoir was made by the construction of a large dam (>15 m in height) on the middle to downstream of the Geum River and the discharge systems have the watergate-spillway (WS), a hydropower penstock (HPP), and two intake towers. The purpose of this study was to investigate the limnological anomalies of turbid water reduction, green algae phenomenon, and oligotrophic state in the lower part of reservoir dam site, and compared with hydro-meteorological factors. Field surveys were conducted in two stations of near dam and the outlet of HPP with one week intervals from January to December 2000. Rainfall was closely related to the fluctuations of inflow, outflow and water level. The rainfall pattern was depended on the storm of monsoon and typhoon, and the increase of discharge and turbidity responded more strongly to the intensity than the frequency. Water temperature and DO fluctuations within the reservoir water layer were influenced by meteorological and hydrological events, and these were mainly caused by water level fluctuation based on temperature stratification, density current and discharge types. The discharges of WS and HPP induced to the flow of water bodies and the outflows of turbid water and nutrients such as nitrogen and phosphorus, respectively. Especially, when hypoxic or low-oxygen condition was present in the bottom water, the discharge through HPP has contributed significantly to the outflow of phosphorus released from the sediment into the downstream of dam. In addition, HPP effluent which be continuously operated throughout the year, was the main factor that could change to a low trophic level in the downreservoir (lacustrine zone). And water-bloom (green-tide) occurring in the lower part of reservoir was the result that the water body of upreservoir being transported and diffused toward the downreseroir, when discharging through the WS. Finally, the hydropower effluent was included the importance and dynamics that could have a temporal and spatial impacts on the physical, chemical and biological factors of the reservoir ecosystem.

Estimation of the Lodging Area in Rice Using Deep Learning (딥러닝을 이용한 벼 도복 면적 추정)

  • Ban, Ho-Young;Baek, Jae-Kyeong;Sang, Wan-Gyu;Kim, Jun-Hwan;Seo, Myung-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.2
    • /
    • pp.105-111
    • /
    • 2021
  • Rice lodging is an annual occurrence caused by typhoons accompanied by strong winds and strong rainfall, resulting in damage relating to pre-harvest sprouting during the ripening period. Thus, rapid estimations of the area of lodged rice are necessary to enable timely responses to damage. To this end, we obtained images related to rice lodging using a drone in Gimje, Buan, and Gunsan, which were converted to 128 × 128 pixels images. A convolutional neural network (CNN) model, a deep learning model based on these images, was used to predict rice lodging, which was classified into two types (lodging and non-lodging), and the images were divided in a 8:2 ratio into a training set and a validation set. The CNN model was layered and trained using three optimizers (Adam, Rmsprop, and SGD). The area of rice lodging was evaluated for the three fields using the obtained data, with the exception of the training set and validation set. The images were combined to give composites images of the entire fields using Metashape, and these images were divided into 128 × 128 pixels. Lodging in the divided images was predicted using the trained CNN model, and the extent of lodging was calculated by multiplying the ratio of the total number of field images by the number of lodging images by the area of the entire field. The results for the training and validation sets showed that accuracy increased with a progression in learning and eventually reached a level greater than 0.919. The results obtained for each of the three fields showed high accuracy with respect to all optimizers, among which, Adam showed the highest accuracy (normalized root mean square error: 2.73%). On the basis of the findings of this study, it is anticipated that the area of lodged rice can be rapidly predicted using deep learning.

Case study on flood water level prediction accuracy of LSTM model according to condition of reference hydrological station combination (참조 수문관측소 구성 조건에 따른 LSTM 모형 홍수위예측 정확도 검토 사례 연구)

  • Lee, Seungho;Kim, Sooyoung;Jung, Jaewon;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.981-992
    • /
    • 2023
  • Due to recent global climate change, the scale of flood damage is increasing as rainfall is concentrated and its intensity increases. Rain on a scale that has not been observed in the past may fall, and long-term rainy seasons that have not been recorded may occur. These damages are also concentrated in ASEAN countries, and many people in ASEAN countries are affected, along with frequent occurrences of flooding due to typhoons and torrential rains. In particular, the Bandung region which is located in the Upper Chitarum River basin in Indonesia has topographical characteristics in the form of a basin, making it very vulnerable to flooding. Accordingly, through the Official Development Assistance (ODA), a flood forecasting and warning system was established for the Upper Citarium River basin in 2017 and is currently in operation. Nevertheless, the Upper Citarium River basin is still exposed to the risk of human and property damage in the event of a flood, so efforts to reduce damage through fast and accurate flood forecasting are continuously needed. Therefore, in this study an artificial intelligence-based river flood water level forecasting model for Dayeu Kolot as a target station was developed by using 10-minute hydrological data from 4 rainfall stations and 1 water level station. Using 10-minute hydrological observation data from 6 stations from January 2017 to January 2021, learning, verification, and testing were performed for lead time such as 0.5, 1, 2, 3, 4, 5 and 6 hour and LSTM was applied as an artificial intelligence algorithm. As a result of the study, good results were shown in model fit and error for all lead times, and as a result of reviewing the prediction accuracy according to the learning dataset conditions, it is expected to be used to build an efficient artificial intelligence-based model as it secures prediction accuracy similar to that of using all observation stations even when there are few reference stations.