• Title/Summary/Keyword: 태양폭발

Search Result 62, Processing Time 0.022 seconds

Si 박막태양전지용 스퍼터링 증착 기술 현황

  • Lee, Seong-Hun;Kim, Dong-Ho;Yun, Jeong-Heum;Kim, Do-Geun;Kim, Jong-Guk;Lee, Geon-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.23.1-23.1
    • /
    • 2011
  • 최근 화석연료를 대체하기 위한 지속가능한 신에너지에 대한 요구가 증대됨에 따라 태양광 발전에 대한 연구도 폭발적으로 늘어가고 있는 추세이다. 태양광이 화석연료 대체에너지로 실효성을 가지기 위해서는 태양광 발전 시스템의 발전효율을 높이고 생산 비용을 저감하는 문제가 선결되어야 한다. 기존 실리콘 태양전지 시스템 설비 비용의 60% 이상을 차지하는 모듈의 제조과정에서 소재 손실을 최소화함으로써 저가격화를 실현하고자 박막형 태양전기 기술이 태동되었다. 현재 박막 태양전지와 관련하여 활발한 기술 개발이 진행되고 있으며 상당한 시장 점유율을 보이고 있는 실정이다. 박막 태양전지 분야에서 CIGS와 같은 화합물 반도체 박막 태양전지 시장이 확대되고 있는 실정을 고려한다면 실리콘 박막 태양전지의 경우 고효율화 저가격화 달성은 더욱 절실한 문제이다. 실리콘 박막의 경우 독성이 없으며 고갈 우려가 없는 소재이면서 기존의 직접회로 산업의 인프라 구조를 활용할 수 있어 많은 기대와 관심을 끌고 있는 박막 태양전지 후보이다. 박막 태양전지 제조에 있어서 핵심기술은 도핑된 실리콘층과 광흡수를 위한 진성 실리콘층을 합성하는 공정 기술이다. 현재 박막 태양전지 산업에서 실리콘 박막 소재의 합성은 주로 PECVD법에 의해 이루어지고 있다. 그러나 스퍼터 공정을 이용한 실리콘 박막 합성 연구 또한 20년 이상의 오랜 기간 동안 연구되어 오고 있다. 스퍼터 공정을 이용한 실리콘 박막합성는 독성 가스를 사용하지 않으며, 디스플레이와 같은 기존의 소자 공정 기술을 채용할 수 있다는 장점을 가지고 있어 주목 받고 있다. 실제로 반응성 마그네트론 스퍼터링에 의해 제조된 실리콘 박막은 PECVD공정에 의한 실리콘 박막에 상응하는 우수한 광전자적 특성을 보인다. 스퍼터 공정에서는 박막 성장을 위한 수송 물질들이 열적 평형 상태에 근접한 라디칼들이라기 보다 대부분 고에너지 원자종과 이온들이 주류를 이루고 있어 합성된 실리콘 박막의 결함 제어가 어렵다는 문제가 있다. 박막 합성 기구의 규명을 통하여 이러한 문제를 해결하기 위한 시도들이 이루어 지고 있으며, 본 발표를 통하여 스퍼터 공정을 이용한 태양전지용 실리콘 박막 합성기술에 대한 현황을 소개하고자 한다.

  • PDF

The Study of the Photo Diode Output Signal for Pusle Radiation Detection (펄스방사선 탐지를 위한 Photo Diode 출력특성 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.869-871
    • /
    • 2012
  • In this paper, we make silicon photodiodes for the detection of pulsed radiation that affects electronics devices and study the output characteristics of photodiodes using circuit design. We conducted the simulation for pulse sensing circuit and experimented the photodiode output characteristics using a high luminance light emitting diode. The results can be used for the design of the input sensor that is trigger of additional module for protecting a electoronics circuit from high energy pulse radiation.

  • PDF

The compatible non-explosive separation device for various pre-loads using the Ni-Cr wire and Kevlar rope (다양한 사전하중에 적용할 수 있는 Ni-Cr wire와 Kevlar rope를 이용한 위성 분리장치)

  • Hwang, Hyun-Su;Kim, Byung-Kyu;Jang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.150-155
    • /
    • 2013
  • We present a kevlar rope based Non-Explosive Actuator(NEA) device which has simple structure and is activated by burning Ni-Cr wire. Through performance test, we find it can be operated under various pre-load by simply changing turn number of Ni-Cr wire. It shows release time of 680ms and shock level of 110G under pre-load of 6.0kN. Launching environment and space environment tests are planned to verify performance of the NEA based on European Satellite Agency test manual. Conclusively, we expect the proposed NEA can be applicable to release solar panel and fairing separation.

Development of Radio Spectrum Monitor for HF Communication (단파 스펙트럼 수신 모니터링 시스템 개발)

  • Park, Sung Won;Kim, Young Yun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.9
    • /
    • pp.821-827
    • /
    • 2015
  • Electromagnetic waves which are emitted from the Sun due to solar flare explosion can cause failures in HF radio communications in the day-side area of the Earth, that is so-call as Radio Blackouts. The international scale representing the severity of the Radio Blackouts is determined by the solar X-ray flux which is measured by United States Geostationary Operational Environmental Satellite. However, the scale is not always applicable to HF communication users in the different area on the Earth, because the HF communication effects depend not only on the X-ray strength but also on the subsolar point location. To solve this problem, we developed a HF radio spectrum monitoring system utilizing a spectrum analyzer. This system conducts a real-time measure of the HF spectrum, and automatically calculates signal to noise ratios and the occurrences of the HF blackouts as comparing with the interference level which is described from the ITU recommendation.

The Changes of UV-B Radiation at the Surface due to Stratospheric Aerosols (성층권 에어로졸에 의한 지표면 UV-B 복사량 변동)

  • Jai-Ho Oh;Joon-Hee Jung;Jeong-Woo Kim
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.21 no.1
    • /
    • pp.31-46
    • /
    • 1993
  • A radiative transfer model with two-stream/delta-Eddington approximation has been developed to calculate the vertical distributions of atmospheric heating rates and radiative fluxes. The performance of the model has been evaluated by comparison with the results of ICRCCM (Intercomparison of radiative codes in climate models). It has been demonstrated that the presented model has a capability to calculate the solar radiation not only accurately but also economically. The characteristics of ultraviolet-B radiation (UV-B; 280-320nm) are examined by comparison of relation between the flux at the top of atmosphere and that at the surface. The relation of UV-B is quadratic due to the strong ozone absorption in this band. Also, the dependence of the UV-B radiation on the stratospheric ozone depletion and stratospheric aerosol haze due to volcanic eruption on the stratospheric ozone depletion and stratospheric aerosol haze due to volcanic eruption has been tested with various solar zenith angles. The surface UV-B increases as the solar zenith angle increases. The existence of stratospheric aerosols causes an increase in the planetary albedo due to the aerosols' backscattering. The planetary albedo with aerosol's effect has been increases as the solar zenith angle is not sensitive. It may be caused by the fact that the aerosols' scattering effect becomes saturated with the relatively long path length in a large solar zenith angle. Finally, the regional impact of stratospheric aerosols due to volcanic eruption on the intensity of UV-B radiation at the surface has been estimated. A direct effect is that the flux is diminished at the low latitudes, while it is enhanced in the high latitudes by the aerosols' photon trap or twilight effect. In the high latitudes, both aerosols' scattering and ozone absorption have strong and opposite impacts to the surface UV-B radiation is located at the mid-latitudes during spring season in both hemispheres.

  • PDF

Text Mining Analysis of News Articles Related to 'Space Hazard' ('우주 위험' 관련 뉴스 기사의 텍스트 마이닝 분석 연구)

  • Jo, Hoon;Sohn, Jungjoo
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.224-235
    • /
    • 2022
  • This study aimed to confirm the status of media reports on space hazards using topic modeling analysis of media articles that are related to space hazards for the past 12 years. Therefore, Latent Dirichlet Allocation (LDA) analysis was performed by collecting over 1200 space hazards articles between 2010 and 2021 on solar storm, artificial space objects, and natural space objects from BIGKins news platform. The articles related to solar storm focused on three topics: the effect of solar explosion on satellites; effect of solar explosion on radio communication in Korea, centered on the Korean Space Weather Center; and relationship between aircrew and space radiation. The articles related to artificial space objects focused on three topics: the threat of space garbage to satellite and space stations and the transition of useful objects into space junk; the relationship between space garbage and humanity as shown in movies; and the effort of developed countries for tracking, monitoring, and disposing of space garbage. The articles related to natural space objects focused on two topics: International Space Agency's tracking and monitoring of near-Earth asteroids and the countermeasures of collisions, and the evolution and extinction of dinosaurs and mammals, with a focus on the collisions of asteroids or comets. Therefore, this study confirmed that domestic media play a role in conveying dangers of space hazards and arousing the attention of public using a total of eight themes in various fields such as society and culture, and derived education method and policy on space hazards.

Non-explosive Low-shock Separation Device for small satellite (소형 위성용 비폭발식 저충격 분리장치)

  • Park, Hyun-Jun;Tak, Won-Jun;Han, Bum-Ku;Kwag, Dong-Gi;Hwang, Jai-Hyuk;Kim, Byung-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.457-463
    • /
    • 2009
  • This paper describes the development of non-explosive separation(NES) device which can be equipped on a small satellite. It comprises mechanism itself and spring-type shape memory alloy(SMA) actuator. In order to design SMA actuator properly, the necessary actuation force is measured. Based on that result, SMA actuator is designed and fabricated. Finally, SMA actuator and the proposed mechanism are integrated. In order to evaluate performance of the developed NES, we carried out a response time test, preload test and shock level test. In near future, we expect to replace the imported NES device with the developed device.

Shape Memory Alloy Actuator and Spiral Spring Based Separation Actuator for Small Satellite (형상기억합금구동기와 태엽스프링을 이용한 소형위성용 분리장치)

  • Lee, Min-Hyoung;Son, Jae-Hwang;Kim, Young-Woong;Kim, Byung-Kyu
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.3
    • /
    • pp.10-15
    • /
    • 2011
  • The separation actuator for the small satellite should fix satellite appendages with high clamping force. After operation, it has to be separated from the satellite body without any damage on satellite system and release the appendages such as a solar panel and an antenna successfully. Therefore, we invent a non-explosive separation actuator for the small satellite which generates low shock and is resettable. In order to confirm performance of the proposed separation actuator, we carried out experiments for separation time, maximum preload for activation, and shock level.

Validity of solar energy generation at the underused Space of LPG filling station (LPG충전소 유휴공간의 태양광발전설비 설치 유효성)

  • Lee, Minkyung;Kim, Jeonghwan;Lee, Jinhan;Joe, Youngdo;Lee, Yeonjae
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.25-32
    • /
    • 2016
  • The purpose of this study is safety evaluation of solar energy generation which is installed on the canopy at the LPG filling station. in case of a gas station, the solar energy generation was become legalization through a related law reform in 2008. Also, in case of a LPG filling station, the solar energy generation was become legalization through a related law reform in 2015. So, the related law that KGS CODE and Safety control of dangerous substances law and the case of installed solar energy generation in gas, LPG filling station was investigated. two scenarios are supposed for the CFD. Release of safety valve pipeline and ruptured dispenser leakage are the scenarios. The FLACS which developed GexCon in Norway was used for simulation. LPG dispersion to the upper side of canopy was very small with safety distance.

The Photovoltaic LED Lighting System applying Lithium Polymer Batteries (리튬 폴리머 전지를 이용한 태양광 LED 조명시스템)

  • Ahn, In-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.109-115
    • /
    • 2014
  • The research on solar energy that we get from nature to cope with energy exhaustion is a very significant and inevitable task for us to do. Along with this, lately, in Korea, as part of new growth engine industry regarding low-carbon green growth, we have selected the LED(Light Emitting Diode) as low power consuming, eco-friendly lighting equipment and have been facilitating research and development on it and creating a variety of new industries utilizing it. What was developed here in this research was the photovoltaic LED lighting system applying lithium polymer batteries equipped with the excellent performance of lithium ion batteries as well as significantly low explosive hazard. Its photovoltaic panel was made to have 100W capacity, and for its power supply system, functional convenience was considered so that it could be equipped with both DC and AC power to be used as household electricity in a variety of ways.