• 제목/요약/키워드: 태양광전지

검색결과 1,141건 처리시간 0.027초

KF 후열처리 공정시 CIGS 박막의 Na 원소 존재가 태양전지 셀성능에 미치는 영향 (KF Post Deposition Treatment Process of Cu(In,Ga)Se2 Thin Film Effect of the Na Element Present in the Solar Cell Performance)

  • 손유승;김원목;박종극;정증현
    • Current Photovoltaic Research
    • /
    • 제3권4호
    • /
    • pp.130-134
    • /
    • 2015
  • The high efficiency cell research processes through the KF post deposition treatment (PDT) of the $Cu(In,Ga)Se_2(CIGS)$ thin film has been very actively progress. In this study, it CIGS thin film deposition process when KF PDT 300 to the processing temperature, 350, $400^{\circ}C$ changed to soda-lime glass (SLG) efficiency of the CIGS thin film characteristics, and solar cell according to Na presence of diffusion from the substrate the effects were analyzed. As a result, the lower the temperature of KF PDT and serves to interrupt the flow of current K-CIGS layer is not removed from the reaction surface, FF and photocurrent is decreased significantly. Blocking of the Na diffusion from the glass substrate is significantly increased while the optical voltage, photocurrent and FF is a low temperature (300, $350^{\circ}C$) in the greatly reduced, and in $400^{\circ}C$ tend to reduce fine. It is the presence of Na in CIGS thin film by electron-induced degradation of the microstructure of CIGS thin film is expected to have a significant impact on increasing the hole recombination rate a reaction layer is formed of the K elements in the CIGS thin film surface.

Ag 함량이 진공증발법으로 형성된 광금지대 (Ag,Cu)(In,Ga)Se2 태양전지에 미치는 영향 (Effects of Ag Content on Co-evaporated Wide Bandgap (Ag,Cu)(In,Ga)Se2 Solar Cells)

  • 박주완;윤재호;조준식;유진수;이희덕;김기환
    • Current Photovoltaic Research
    • /
    • 제3권1호
    • /
    • pp.16-20
    • /
    • 2015
  • Ag addition in chalcopyrite materials is known to lead beneficial changes in aspects of structural and electronic properties. In this work, the effects of Ag alloying of $Cu(In,Ga)Se_2$-based solar cells has been investigated. Wide bandgap $(Ag,Cu)(In_{1-x},Ga_x)Se_2$ (x = 0.75~0.8) films have been deposited using a three-stage co-evaporation with various Ag/(Ag+Cu) ratios. With Ag alloying the $(Ag,Cu)(In_{1-x},Ga_x)Se_2$ (x~0.8) films were found to have greater grainsize and film thickness. Device were also fabricated with the $(Ag,Cu)(In_{1-x},Ga_x)Se_2$ (x~0.8) films and their J-V and quantum efficiency measurements were carried out. The highest-efficiency $(Ag,Cu)(In_{1-x},Ga_x)Se_2$ solar cell with Eg > 1.5 eV had an efficiency of 12.2% with device parameters $V_{OC}=0.810V$, $J_{SC}=21.7mA/cm^2$, and FF = 69.0%.

그림자 영향을 고려한 PV 시스템의 VPO MPPT 제어 (Development of VPO MPPT of PV System Considering Shadow Influence)

  • 최정식;고재섭;정동화
    • 전력전자학회논문지
    • /
    • 제16권5호
    • /
    • pp.521-531
    • /
    • 2011
  • 본 논문은 그림자 영향을 고려한 PV(Photovoltaic) 시스템의 VPO(Variable Perturbation & Observation)MPPT(Maximum Power Point Tracking) 제어를 제시한다. 태양전지의 출력 특성은 비선형이고 온도, 일사량 및 그림자의 영향을 많이 받는다. MPPT 제어는 태양광발전 시스템의 출력 및 효율을 증가시키기 위한 매우 중요한 기술이다. 종래의 PO(Perturbation & Observation)와 IC(Incremental conductance) 등은 지속적인 자려진동에 의해 MPP(Maximum Power Point)를 찾는 방법으로 그림자 영향에 의해 출력이 급격하게 변할 경우 MPPT 제어를 수행하지 못한다. 이러한 문제점을 해결하기 위해 출력 변동에 따라 스텝 값이 변하는 새로운 제어 알고리즘을 제시한다. 제시한 알고리즘은 일사량, 온도 및 그림자 영향에 대해 종래의 제어 알고리즘과 응답특성을 비교하고 이를 통해 제시한 알고리즘의 타당성을 입증한다.

반사방지막(ARC)의 SiO2 구조에 따른 PERC 태양전지 PID 열화 완화 상관관계 연구 (Mitigation of Potential-Induced Degradation (PID) for PERC Solar Cells Using SiO2 Structure of ARC Layer)

  • 오경석;박지원;천성일
    • Current Photovoltaic Research
    • /
    • 제8권4호
    • /
    • pp.114-119
    • /
    • 2020
  • In this study, Mitigation of Potential-induced degradation (PID) for PERC solar cells using SiO2 Structure of ARC layer. The conventional PID test was conducted with a cell-level test based on the IEC-62804 test standard, but a copper PID test device was manufactured to increase the PID detection rate. The accelerated aging test was conducted by maintaining 96 hours with a potential difference of 1000 V at a temperature of 60℃. As a result, the PERC solar cell of SiO2-Free ARC structure decreased 22.11% compared to the initial efficiency, and the PERC solar cell of the Upper-SiO2 ARC structure decreased 30.78% of the initial efficiency and the PID reliability was not good. However, the PERC solar cell with the lower-SiO2 ARC structure reduced only 2.44%, effectively mitigating the degradation of PID. Na+ ions in the cover glass generate PID on the surface of the PERC solar cell. In order to prevent PID, the structure of SiNx and SiO2 thin films of the ARC layer is important. SiO2 thin film must be deposited on bottom of ARC layer and the surface of the PERC solar cell N-type emitter to prevent surface recombination and stacking fault defects of the PERC solar cell and mitigated PID degradation.

대면적 실리콘 태양전지의 PDMS 도포에 의한 반사방지막 특성 (Anti-reflection Coating of PDMS by Screen-printing on Large Area of Silicon Solar Cells)

  • 심명섭;정유진;최동진;박현정;강윤묵;김동환;이해석
    • Current Photovoltaic Research
    • /
    • 제10권4호
    • /
    • pp.95-100
    • /
    • 2022
  • Solar cell is a device that converts photon energy into electrical energy. Therefore, absorption of solar spectrum light is one of the most important characteristics to design the solar cell structures. Various methods have emerged to reduce optical losses, such as textured surfaces, back contact solar cells, anti-reflection layers. Here, the anti-reflection coating (ARC) layer is typically utilized whose refractive index value is between air (~1) and silicon (~4) such as SiNx layer (~1.9). This research is to print a material called polydimethylsiloxane (PDMS) to form a double anti-reflection layer. Light with wavelength in the range of 0.3 to 1.2 micrometers does not share a wavelength with solar cells. It is confirmed that the refractive index of PDMS (~1.4) is an ARC layer which decreases the reflectance of light absorption region on typical p-type solar cells with SiNx layer surface. Optimized PDMS printing with analyzing optical property for cell structure can be the effective way against outer effects by encapsulation.

PM6:Y6를 기반으로 한 삼중 혼합 유기 태양전지 동향 (Ternary Blend Organic Solar Cells Trends based on PM6:Y6)

  • 윤동환;신광용;정윤혜;하영우;김기환
    • Current Photovoltaic Research
    • /
    • 제11권3호
    • /
    • pp.79-86
    • /
    • 2023
  • As we strive to mitigate the environmental impact caused by the use of fossil fuels, the exploration of alternative energy sources has gained significant attention. Solar energy, in particular, has emerged as a promising solution due to its eco-friendly nature and virtually limitless availability. Among the various types of solar cells that harness this abundant energy source, organic solar cells have garnered considerable interest. Organic solar cells feature a photo-active layer composed of organic semiconductors, offering a range of appealing advantages such as cost-effectiveness, flexibility, translucency, and the ability to produce customizable colors. However, the commercialization of organic solar cells has been impeded by certain challenges, notably their relatively low efficiency and stability. To overcome these obstacles and pave the way for wider adoption, researchers have been exploring innovative approaches, including the implementation of ternary blend organic solar cells. This strategy involves introducing a third component into the photo-active layer alongside the organic semiconductors, with the aim of enhancing the overall performance of the solar cell. In this paper, we delve into the issues associated with organic solar cells and focus on one potential solution: ternary blend organic solar cells. Specifically, we examine the application of this approach to PM6:Y6, which stands as one of the most popular combinations of organic semiconductors. By investigating the potential of ternary blends, particularly utilizing PM6:Y6, we aim to accelerate the commercialization of organic solar cells.

전하선택접촉 태양전지 적용을 위한 VOx 박막, NiOx 박막, CuIx 박막의 특성 연구 (Characteristics of VOx Thin Film, NiOx Thin Film, and CuIx Thin Film for Carrier Selective Contacts Solar Cells)

  • 전기석;김민섭;이은비;신진호;임상우;정채환
    • Current Photovoltaic Research
    • /
    • 제11권2호
    • /
    • pp.39-43
    • /
    • 2023
  • Carrier-selective contacts (CSCs) solar cells are considerably attractive on highly efficient crystalline silicon heterojunction (SHJ) solar cells due to their advantages of high thermal tolerance and the simple fabrication process. CSCs solar cells require a hole selective contact (HSC) layer that selectively collects only holes. In order to selectively collect holes, it must have a work function characteristic of 5.0 eV or more when contacted with n-type Si. The VOx, NiOx, and CuIx thin films were fabricated and analyzed respectively to confirm their potential usage as a hole-selective contact (HSC) layer. All thin films showed characteristics of band-gap engergy > 3.0 eV, work function > 5.0 eV and minority carrier lifetime > 1.5 ms.

실리콘 이종접합 태양전지의 버스바 전극 두께와 접합강도의 상관관계 (A Study on Correlation between Busbar Electrodes of Heterojunction Technology Solar Cells and the Peel Strength)

  • 전다영;문지연;박고등;오트곤게렐 줄만다크;남혜령;권오련;임현수;김성현
    • Current Photovoltaic Research
    • /
    • 제11권2호
    • /
    • pp.44-48
    • /
    • 2023
  • In heterojunction technology (HJT) solar cells, low-temperature curing paste is used because the passivation layer deteriorates at high temperatures of 200℃ or higher. However, manufacturing HJT photovoltaic (PV) modules is challenging due to the weak peel strength between busbar electrodes and cells after soldering process. For this issue, the electrode thicknesses of the busbars of the HJT solar cell were analyzed, and the peel strengths between electrodes and wires were measured after soldering using an infrared (IR) lamp. As a result, the electrodes printed by the screen printing method had a difference in thickness due to screen mask. Also, as the thickness of the electrode increased, the peel strength of the wire increased.

UVO 처리에 따른 NiOx 박막 및 페로브스카이트 태양전지 셀 특성 변화 (Effect of UVO Treatment on Optical and Electrical Properties of NiOx Thin Film and Perovskite Solar Cells)

  • 조수진;황재근;편도원;정석현;이솔희;이원규;황지성;최영호;김동환
    • Current Photovoltaic Research
    • /
    • 제12권1호
    • /
    • pp.1-5
    • /
    • 2024
  • Perovskite solar cells have exhibited a remarkable increase in efficiency from an initial 3.8% to 26.1%, marking a significant advancement. However, challenges persist in the commercialization of perovskite solar cells due to their low stability with respect to humidity, light exposure, and temperature. Moreover, the instability of the organic charge transport layer underscores the need for exploring inorganic alternatives. In the manufacturing process of the perovskite solar cells' oxide charge transport layer, ultraviolet-ozone (UVO) treatment is commonly applied to enhance the wettability of the perovskite solution. The UVO treatment on metal oxides has proven effective in suppressing surface oxygen vacancies and removing surface organic contaminants. This study focused on the characterization of nickel oxide as the hole transport material in perovskite solar cells, specifically investigating the impact of UVO treatment on film properties. Through this analysis, changes induced by the UVO treatment were observed, and consequent alterations in the device characteristics were identified.

유도결합플라즈마 공정에서 조건별 플라즈마 방출광 세기 변화에 따른 전자온도의 전기적, 광학적 진단에 관한 연구

  • 이예슬;박혜진;최진우;김우재;황상혁;조태훈;윤명수;권기청
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.215.1-215.1
    • /
    • 2016
  • 플라즈마는 반도체, 디스플레이, 태양전지 등 다양한 산업 분야에 이용된다. 플라즈마 공정 시 수율 향상을 위해 플라즈마를 진단하는 기술이 필요한데, 대표적으로 전자온도가 있다. 반도체 공정의 낮은 압력과 높은 밀도의 플라즈마에서 전자온도는 1~10 eV 정도인데, 0.5 eV정도의 아주 적은 차이로도 공정 결과에 큰 영향을 미친다. 플라즈마의 전자온도를 측정하는 방법은 전기적 탐침 방법인 랑뮤어 탐침(Langmuir Probe)과 와이즈 프로브(Wise Probe)를 이용한 방법, 그리고 광학적 방법인 방출분광법(OES : Optical Emission Spectroscopy)이 있다. 전기적 탐침 방법은 직접 플라즈마 내부에 탐침을 넣기 때문에 불활성 기체를 사용한 공정에서는 잘 작동하지만 건식식각이나 증착에 사용할 경우 탐침의 오염으로 인한 오동작, 공정 시 생성된 샘플에 영향을 줄 수 있다는 단점이 있다. 반면에 방출분광법은 광학적 진단으로, 플라즈마를 사용하는 공정 진행 중에 외부에 광학계를 설치하여 플라즈마에서 발생하는 빛을 광학적으로 분석하기 때문에 공정에 영향을 미치지 않고, 공정 장비에 적용이 쉬운 장점을 가지고 있다. 본 연구에서는 RF Power를 인가한 유도결합플라즈마(ICP : Inductively Coupled Plasma) 공정에서 아르곤 가스와 산소 혼합가스 분압과 인가전압을 변화시켜 플라즈마 방출광 세기 변화에 따른 전자온도를 측정하였다. 전자온도 측정에는 전기적 방법인 랑뮤어 탐침, 와이즈 프로브를 이용한 방법과 광학적 방법인 방출분광법을 사용하여 측정하였으며 이를 비교 분석하였다.

  • PDF