• Title/Summary/Keyword: 태스크 유사도

Search Result 33, Processing Time 0.026 seconds

A Study of Keyword Spotting System Based on the Weight of Non-Keyword Model (비핵심어 모델의 가중치 기반 핵심어 검출 성능 향상에 관한 연구)

  • Kim, Hack-Jin;Kim, Soon-Hyub
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.381-388
    • /
    • 2003
  • This paper presents a method of giving weights to garbage class clustering and Filler model to improve performance of keyword spotting system and a time-saving method of dialogue speech processing system for keyword spotting by calculating keyword transition probability through speech analysis of task domain users. The point of the method is grouping phonemes with phonetic similarities, which is effective in sensing similar phoneme groups rather than individual phonemes, and the paper aims to suggest five groups of phonemes obtained from the analysis of speech sentences in use in Korean morphology and in stock-trading speech processing system. Besides, task-subject Filler model weights are added to the phoneme groups, and keyword transition probability included in consecutive speech sentences is calculated and applied to the system in order to save time for system processing. To evaluate performance of the suggested system, corpus of 4,970 sentences was built to be used in task domains and a test was conducted with subjects of five people in their twenties and thirties. As a result, FOM with the weights on proposed five phoneme groups accounts for 85%, which has better performance than seven phoneme groups of Yapanel [1] with 88.5% and a little bit poorer performance than LVCSR with 89.8%. Even in calculation time, FOM reaches 0.70 seconds than 0.72 of seven phoneme groups. Lastly, it is also confirmed in a time-saving test that time is saved by 0.04 to 0.07 seconds when keyword transition probability is applied.

A Study on PLU (Phone-Likely Unit) for Korean Continuous Speech Recognition (강건한 한국어 연속음성인식을 위한 유사음소단일에 대한 연구)

  • Seo Jun-Bae;Kim Joo-Gon;Kim Min-Jung;Jung Ho-Youl;Chung Hyun-Yeol
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.37-40
    • /
    • 2004
  • 본 논문은 한국어 연속음성인식에 효율적인 문맥의존 음향모델 수에 대한 연구로써 유사음소단위 수에 따른 인식 성능을 비교, 평가하였다. 기존에 본연구실에서는 48음소를 기본인식단위로 이용하고 있으나 연속음성인식의 경우 문맥종속모델이 사용되고 문맥종속모델은 변이 음을 고려한 음소가 이미 포함되어 있어 이를 고려하면 기본 음소를 줄이므로서 계산량의 감소와 인식 성능 향상을 기대할 수 있을 것으로 생각된다. 따라서 , 본 논문에서는 기존의 48음소와 이를 39음소로 줄여 인식실험에 사용하여 그 성능을 비교 평가하기로 하였다. 이를 위하여 다양한 태스크의 데이터베이스를 통합하여 부족한 문맥요소들을 확장한 후 인식실험을 수행하였다. 실험결과 변이음의 개수를 줄이면서도 인식 성능저하가 없음을 확인할 수 있었으며 연속 음성의 경우 39음소를 이용한 경우가 $10\%$정도의 향상된 인식성능을 얻을 수 있음을 확인할 수 있었다.

  • PDF

LUKE based Korean Dense Passage Retriever (LUKE 기반의 한국어 문서 검색 모델 )

  • Dongryul Ko;Changwon Kim;Jaieun Kim;Sanghyun Park
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.131-134
    • /
    • 2022
  • 자연어처리 분야 중 질의응답 태스크는 전통적으로 많은 연구가 이뤄지고 있는 분야이며, 최근 밀집 벡터를 사용한 리트리버(Dense Retriever)가 성공함에 따라 위키피디아와 같은 방대한 정보를 활용하여 답변하는 오픈 도메인 QA(Open-domain Question Answering) 연구가 활발하게 진행되고 있다. 대표적인 검색 모델인 DPR(Dense Passage Retriever)은 바이 인코더(Bi-encoder) 구조의 리트리버로서, BERT 모델 기반의 질의 인코더(Query Encoder) 및 문단 인코더(Passage Encoder)를 통해 임베딩한 벡터 간의 유사도를 비교하여 문서를 검색한다. 하지만, BERT와 같이 엔티티(Entity) 정보에 대해 추가적인 학습을 하지 않은 언어모델을 기반으로 한 리트리버는 엔티티 정보가 중요한 질문에 대한 답변 성능이 저조하다. 본 논문에서는 엔티티 중심의 질문에 대한 답변 성능 향상을 위해, 엔티티를 잘 이해할 수 있는 LUKE 모델 기반의 리트리버를 제안한다. KorQuAD 1.0 데이터셋을 활용하여 한국어 리트리버의 학습 데이터셋을 구축하고, 모델별 리트리버의 검색 성능을 비교하여 제안하는 방법의 성능 향상을 입증한다.

  • PDF

Properties and Quantitative Analysis of Bias in Korean Language Models: A Comparison with English Language Models and Improvement Suggestions (한국어 언어모델의 속성 및 정량적 편향 분석: 영어 언어모델과의 비교 및 개선 제안)

  • Jaemin Kim;Dong-Kyu Chae
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.558-562
    • /
    • 2023
  • 최근 ChatGPT의 등장으로 텍스트 생성 모델에 대한 관심이 높아지면서, 텍스트 생성 태스크의 성능평가를 위한 지표에 대한 연구가 활발히 이뤄지고 있다. 전통적인 단어 빈도수 기반의 성능 지표는 의미적인 유사도를 고려하지 못하기 때문에, 사전학습 언어모델을 활용한 지표인 BERTScore를 주로 활용해왔다. 하지만 이러한 방법은 사전학습 언어모델이 학습한 데이터에 존재하는 편향으로 인해 공정성에 대한 문제가 우려된다. 이에 따라 한국어 사전학습 언어모델의 편향에 대한 분석 연구가 필요한데, 기존의 한국어 사전학습 언어모델의 편향 분석 연구들은 사회에서 생성되는 다양한 속성 별 편향을 고려하지 못했다는 한계가 있다. 또한 서로 다른 언어를 기반으로 하는 사전학습 언어모델들의 속성 별 편향을 비교 분석하는 연구 또한 미비하였다. 이에 따라 본 논문에서는 한국어 사전학습 언어모델의 속성 별 편향을 비교 분석하며, 영어 사전학습 언어모델이 갖고 있는 속성 별 편향과 비교 분석하였고, 비교 가능한 데이터셋을 구축하였다. 더불어 한국어 사전학습 언어모델의 종류 및 크기 별 편향 분석을 통해 적합한 모델을 선택할 수 있도록 가이드를 제시한다.

  • PDF

Improving passage retrieval via negative sampling from semantic feature space (의미론적 feature 공간상에서의 negative sampling을 통한 검색 성능 개선)

  • Jeong-Doo Lee;Beomseok Hong;Wonseok Choi;Youngsub Han;Byoung-Ki Jeon;Seung-Hoon Na
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.146-149
    • /
    • 2022
  • 최근 검색 태스크에서는 좋은 negative sample을 얻는 방법론들이 적용되어 큰 성능 향상을 이뤘다. 하지만 좋은 negative sample 대부분의 방법들은 큰 계산 비용이 든다. 따라서 본 논문에서는 계산 비용이 적고 효과적인 negative sample을 얻기 위해 Mixed Gaussian Recurrent Chain (MGRC) sampling을 사용하여 feature 공간상에서 의미론적으로 유사한 feature를 얻고 이를 negative sample로 활용하여 기존 baseline 모델보다 좋은 성능을 얻었다.

  • PDF

Similar Contents Recommendation Model Based On Contents Meta Data Using Language Model (언어모델을 활용한 콘텐츠 메타 데이터 기반 유사 콘텐츠 추천 모델)

  • Donghwan Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.27-40
    • /
    • 2023
  • With the increase in the spread of smart devices and the impact of COVID-19, the consumption of media contents through smart devices has significantly increased. Along with this trend, the amount of media contents viewed through OTT platforms is increasing, that makes contents recommendations on these platforms more important. Previous contents-based recommendation researches have mostly utilized metadata that describes the characteristics of the contents, with a shortage of researches that utilize the contents' own descriptive metadata. In this paper, various text data including titles and synopses that describe the contents were used to recommend similar contents. KLUE-RoBERTa-large, a Korean language model with excellent performance, was used to train the model on the text data. A dataset of over 20,000 contents metadata including titles, synopses, composite genres, directors, actors, and hash tags information was used as training data. To enter the various text features into the language model, the features were concatenated using special tokens that indicate each feature. The test set was designed to promote the relative and objective nature of the model's similarity classification ability by using the three contents comparison method and applying multiple inspections to label the test set. Genres classification and hash tag classification prediction tasks were used to fine-tune the embeddings for the contents meta text data. As a result, the hash tag classification model showed an accuracy of over 90% based on the similarity test set, which was more than 9% better than the baseline language model. Through hash tag classification training, it was found that the language model's ability to classify similar contents was improved, which demonstrated the value of using a language model for the contents-based filtering.

Korean End-to-End Coreference Resolution with BERT for Long Document (긴 문서를 위한 BERT 기반의 End-to-End 한국어 상호참조해결)

  • Jo, Kyeongbin;Jung, Youngjun;Lee, Changki;Ryu, Jihee;Lim, Joonho
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.259-263
    • /
    • 2021
  • 상호참조해결은 주어진 문서에서 상호참조해결 대상이 되는 멘션(mention)을 식별하고, 동일한 개체(entity)를 의미하는 멘션들을 찾아 그룹화하는 자연어처리 태스크이다. 최근 상호참조해결에서는 BERT를 이용하여 단어의 문맥 표현을 얻은 후, 멘션 탐지와 상호참조해결을 동시에 진행하는 end-to-end 모델이 주로 연구되었으나, 512 토큰 이상의 긴 문서를 처리하기 위해서는 512 토큰 이하로 문서를 분할하여 처리하기 때문에 길이가 긴 문서에 대해서는 상호참조해결 성능이 낮아지는 문제가 있다. 본 논문에서는 512 토큰 이상의 긴 문서를 위한 BERT 기반의 end-to-end 상호참조해결 모델을 제안한다. 본 모델은 긴 문서를 512 이하의 토큰으로 쪼개어 기존의 BERT에서 단어의 1차 문맥 표현을 얻은 후, 이들을 다시 연결하여 긴 문서의 Global Positional Encoding 또는 Embedding 값을 더한 후 Global BERT layer를 거쳐 단어의 최종 문맥 표현을 얻은 후, end-to-end 상호참조해결 모델을 적용한다. 실험 결과, 본 논문에서 제안한 모델이 기존 모델과 유사한 성능을 보이면서(테스트 셋에서 0.16% 성능 향상), GPU 메모리 사용량은 1.4배 감소하고 속도는 2.1배 향상되었다.

  • PDF

Applying TIPC Protocol for Increasing Network Performance in Hadoop-based Distributed Computing Environment (Hadoop 기반 분산 컴퓨팅 환경에서 네트워크 I/O의 성능개선을 위한 TIPC의 적용과 분석)

  • Yoo, Dae-Hyun;Chung, Sang-Hwa;Kim, Tae-Hun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.5
    • /
    • pp.351-359
    • /
    • 2009
  • Recently with increase of data in the Internet, platform technologies that can process huge data effectively such as Google platform and Hadoop are regarded as worthy of notice. In this kind of platform, there exist network I/O overheads to send task outputs due to the MapReduce operation which is a programming model to support parallel computation in the large cluster system. In this paper, we suggest applying of TIPC (Transparent Inter-Process Communication) protocol for reducing network I/O overheads and increasing network performance in the distributed computing environments. TIPC has a lightweight protocol stack and it spends relatively less CPU time than TCP because of its simple connection establishment and logical addressing. In this paper, we analyze main features of the Hadoop-based distributed computing system, and we build an experimental model which can be used for experiments to compare the performance of various protocols. In the experimental result, TIPC has a higher bandwidth and lower CPU overheads than other protocols.

A Study on Continuity of User Experience in Multi-device Environment (멀티 디바이스 환경에서 사용자 경험의 연속성에 관한 고찰)

  • Lee, Young-Ju
    • Journal of Digital Convergence
    • /
    • v.16 no.11
    • /
    • pp.495-500
    • /
    • 2018
  • This study examined the factors that can enhance the continuity of user experience in multi - device environment. First of all, regarding the structural difference and continuity of tasks, functional differences such as OS difference according to the characteristics of cross media, use of mouse and touch gesture were found to interfere with continuity. To increase continuity, metaphor and ambience To increase relevance and visibility. In the continuity part of visual memory and cognition, familiarity was given by the identity and similarity of visual perception elements, and it was found that familiarity factors are closely related to continuity. Finally, for the continuity of the user experience, we can see that the visibility factors as well as the meaning and layout consistency of the information are factors for the continuity of the user experience. Based on this, it was found that familiarity, consistency, and correlation were significant influences on continuity dimension of user experience, but visibility did not have a significant effect on continuity when regression analysis was conducted as factors of familiarity, consistency, correlation and visibility.

Multi-task Deep Neural Network Model for T1CE Image Synthesis and Tumor Region Segmentation in Glioblastoma Patients (교모세포종 환자의 T1CE 영상 생성 및 암 영역분할을 위한 멀티 태스크 심층신경망 모델)

  • Kim, Eunjin;Park, Hyunjin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.474-476
    • /
    • 2021
  • Glioblastoma is the most common brain malignancies arising from glial cells. Early diagnosis and treatment plan establishment are important, and cancer is diagnosed mainly through T1CE imaging through injection of a contrast agent. However, the risk of injection of gadolinium-based contrast agents is increasing recently. Region segmentation that marks cancer regions in medical images plays a key role in CAD systems, and deep neural network models for synthesizing new images are also being studied. In this study, we propose a model that simultaneously learns the generation of T1CE images and segmentation of cancer regions. The performance of the proposed model is evaluated using similarity measurements including mean square error and peak signal-to-noise ratio, and shows average result values of 21 and 39 dB.

  • PDF