• Title/Summary/Keyword: 태그 안테나

Search Result 169, Processing Time 0.024 seconds

Radiation Efficiency Improvement of RFID Tag Antenna for Metallic Objects Printed on Lossy Substrate (손실 기판을 이용한 금속 부착형 RFID 태그 안테나의 복사 효율 향상)

  • Son, Hae-Won;Choi, Won-Kyu;Choi, Gil-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.11
    • /
    • pp.1265-1271
    • /
    • 2008
  • In this paper, we propose a new antenna design method for RFID tass on metallic surfaces using a low-cost, high-loss substrate such as FR4. The proposed design method highly reduces the substrate loss due to its dielectric loss, and so improves the radiation efficiency of the tag antenna more than double compared with a conventional PIFA(planar inverted-F antenna). The equivalent circuit model of the antenna according to the proposed method was established and its characteristics were analyzed systematically in this paper. The excellency of the proposed design method was verified by the fabrication and measurement of a prototype antenna.

A CPS-type Microstrip Patch Antenna Design for 910MHz RFID Tags (CPS구조를 갖는 910MHz 대역 RFID Tag용 마이크로스트립 패치 안테나 설계)

  • Son, Myung-Sik;Cho, Byung-Mo
    • Journal of IKEEE
    • /
    • v.12 no.3
    • /
    • pp.144-150
    • /
    • 2008
  • This paper describes the design of a coplanar-stripline(CPS) antenna without via hole in microstrip patch type for 910MHz RFID tags using the HFSS simulator. In order to obtain the simplified fabrication design of the antenna, we have used only an impedance matching network to match the impedance of a RFID-tag chip to that of the antenna, not using bandpass filter(BPF). In advance of the optimized antenna design, we have obtained and shown a good agreement compared with the published antenna for 5.8GHz in order to verify the simulation parameters in the HFSS. Based on the verified simulation parameters in the HFSS, we have designed and optimized the 910MHz-CPS-type microstrip patch antenna. The designed simulation results of the antenna show that the proposed antenna is very proper for RFID tags with the 910MHz center frequency without via hole in the microstrip patch antenna.

  • PDF

Design of a Tag Antenna with a Low Performance Distortion from an Attached Surface Material Using the Asymmetric Dual-Arm Dipole Structure (부착면 표면물질에 의한 성능 왜곡을 최소화한 이중 선로의 비대칭 다이폴 형태 태그 안테나 설계)

  • Kim, Do-Kyun;Choo, Ho-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.4 s.119
    • /
    • pp.398-407
    • /
    • 2007
  • In this paper we proposed the tag antenna with a low performance distortion from an attached surface material using the asymmetric dual-arm dipole antenna(ADDA) structure. The tag is designed to exhibit low performance changes when the tag is attached on a target object(the medical litter receptacle, ${\varepsilon}_r=1.7,\;tan\;{\delta}=0.002$). Detail design parameters for the proposed antenna are optimized to maintain a good readable range in free-space as well as on a target object. The size of the optimized antenna is $100\;mm{\times}50\;mm$. The antenna shows the matching bandwidth($S_{11}$< -10 dB) of 3.7 % and the radiation efficiency of 80 % at the operating frequency. Finally we confirmed the readable range of the tag antenna by measurement and it shows about 5.3 m in free space and 5.5 m on the target object.

Near-Isotropic Tag Antenna in UHF band Using Inductively Coupled Feeding (유도 결합 구조를 응용한 UHF 대역 Near-Isotropic 태그 안테나)

  • Ahn, Jun-Oh;Jang, Hyung-Min;Moon, Hyo-Sang;Lee, Bom-Son
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.12 s.115
    • /
    • pp.1240-1248
    • /
    • 2006
  • This paper presents an UHF band(911 MHz) RFID tag antenna which has near-isotropic radiation pattern and easy conjugate impedance matching characteristics to any commercial chips of usual practice through the application of an inductively-coupled feeding. The proposed antenna of compact size $40{\times}46mm\;(0.12{\times}0.14{\lambda})$ has, at normal incidence, the maximum RCS of $-18.5dBm^2$ and the 3 dB RCS bandwidth of 9 MHz(1 %) in case of short chip load. It has the maximum and minimum RCS' of $-16.9dBm^2\;and\;-21.4dBm^2$ depending on the incident angles. The difference of about 4.5 dB is relatively small compared with that (about 70 dB) of a pure dipole antenna. The designed antenna has been fabricated and its RCS' have been measured varying the angles of incidence. The measured RCS' have been found to have good agreement with the simulated ones.

Miniaturization of Circular Loop Antenna Using Meander Line for RFID Tag Applications (미앤더 라인을 이용한 RFID 태그용 원형 루프 안테나의 소형화)

  • Ryu, Hong-Kyun;Woo, Jong-Myung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.6 s.121
    • /
    • pp.591-601
    • /
    • 2007
  • In this paper, the miniaturized radio frequency identification(RFID) tag antennas used in UHF band$(908.5{\sim}914MHz)$ are designed and fabricated by using the circular loop antenna(CLA). Miniaturization of CLA was possible to transform the structure of circular loop into the structure of meander line. In the case of double meander line CLA is reduced up to 83% compared with the general type CLA. The $S_{11}$, -10 dB bandwidth, and gain of double meander line CLA were -11.9 dB, 12 MHz(1.3%), and -1.18 dBd. Also, a small half-wavelength CLA using double meander line is designed and fabricated for flat snack bag coated aluminum. The antenna is reduced up to 92.1% except ground. It shows the $S_{11}$ of -16.5 dB, -10 dB bandwidth of 48 MHz(5%) and gain of -0.58 dBd. The radiation pattern shows omni-directional pattern in z-y plane(x-axis pol.). Through this result, we can confirm that miniaturized type CLAs using meander lines are suitable for miniaturized RFIB tag antennas with the UHF band.

A Folded Label Tag for Metallic Environment over UHF Band (금속환경에 적용가능한 UHF대역 라벨 태그의 구현 및 성능평가)

  • Eum, Tae-Hwan;Moon, Byung Hyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.2
    • /
    • pp.19-24
    • /
    • 2015
  • In this paper, a folded label type RFID tag antenna is designed and produecd for metellic environment over UHF band. Since performance of regular label type RFID tag is seriously degraded for the metallic environment, a folded label tag is proposed to improve the performance. The proposed tag is operating at 910MHz by using inductive T Matching Feed and simulated in HFSS by Ansoft. The actual size is $65{\times}23{\times}3(mm)$ with the impedance of $52-j158{\Omega}$. The maximum distance of identification for the proposed tag is measured as 5.5 meters.

A Study on Hybrid Track Circuit Tag Recognition Enhancement (하이브리드 궤도회로 태그 인식율 향상에 관한 연구)

  • Yang, Dong-In;Li, Chang-Long;Jin, Zhe-Huan;Lee, Key-Seo;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.4
    • /
    • pp.537-542
    • /
    • 2014
  • Track circuit is a simple electrical device which lies in the connection of the two rails by the wheels and axle of locomotives and rolling stock to short out an electrical circuit, used to detect the absence of a train on rail tracks. In railway signaling system, there are similar systems such as RFID and wheel sensor, GPS etc, are research and developing. Hybrid track circuit is using RFID antenna and reader on the cab and RFID tag on the sleeper. because of the safety in railway operation, tag detection of train position detection function in the hybrid track circuit needs high reliability. This paper studied tag recognition enhancement used tag angles.

Design of Tag Antenna without Shadow Zone in Readable Pattern (인식 음영 구역을 제거한 RFID 태그 안테나 설계)

  • Cho, Chi-Hyun;Choo, Ho-Sung;Park, Ik-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.12 s.103
    • /
    • pp.1206-1212
    • /
    • 2005
  • In this paper, we propose a novel antenna structure which uses the electric and magnetic currents so as to eliminate nulls on their radiation pattern. The tag antenna was matched to the conjugate impedance of the commercial tag chip using the modified double T matching network. The radiation efficiency is about $90\%$, and the bandwidth($S_{11}< -10 dB$) is 848${\~}$926 MHz. Also it shows the gain deviation between the maximum and minimum gains about 4 dB at any direction of the tag antenna at the operating frequency. The readable range of the tag is 1.7${\~}$2.4 m for an arbitrary rotation angle of the tag with a commercial tag chip.

Study of the 900 MHz Near Field RFID System for the Jewelry Management (귀금속 관리를 위한 900 MHz Near Field RFID 시스템에 관한 연구)

  • Lee, Jin-Seong;Lee, Kyoung-Hwan;Chung, Chung-You
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1B
    • /
    • pp.78-84
    • /
    • 2010
  • A fixed 900 MHz near field RFID system is developed to provide information; market efficiency, jewelry information and the circulation history information in real time, to the customers. The developed RFID system for the jewelry management consists of a reader, antenna and a CPU in a integrated type. The system size is $38\;{\times}\;25\;{\times}\;19\;cm^3$, the operated frequency band of the reader antenna is 905 ~ 926 MHz. The maximum gain of the embedded reader antenna is 5.1 dBii(@ 910 MHz). Honeycomb tag manufactured by RSI Co. is suitable for the jewelry management than another other commercial near field tags. The tagging method and the tagging location of Honeycomb tag are suggested. In the suggested system, the maximum reading range is about 16 cm, and the zone with 100 % recognition rate is 10 cm from the radom of the reader antenna.

A Study on a Near-Field Reader Antenna for 900 MHz RFID (근접 영역용 900MHz RFID 리더기 안테나에 관한 연구)

  • Park, Joung-Geun;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.3
    • /
    • pp.23-30
    • /
    • 2012
  • In this paper, we propose a new near-field reader antenna for 900 MHz RFID. The proposed antenna consists the micro-strip antenna with the periodic structure. The overall dimension of the antenna is $313mm{\times}152mm{\times}14mm$. The antenna has the uniform E-field distribution in near field region and the heart-shaped radiation beam pattern (Peak gain=-2 dBi). The transmitted power range is from 17 dBm to 23 dBm. We focus on minimizing the detected error by suppressing the reflected power from the metal, which is attached to the surface by tag, and by reducing the transmitted power from tag.