• Title/Summary/Keyword: 탑재컴퓨터(on-board computer)

Search Result 37, Processing Time 0.027 seconds

차세대 위성용 탑재컴퓨터 설계

  • Kwon, Ki-Ho;Kim, Day-Young;Choi, Seung-Woon;Lee, Yun-Ki;Lee, Jong-In;Kim, Hak-Jung
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.79-87
    • /
    • 2005
  • This paper describes a new on-board computer design for the next generation satellite. The new on-board computer utilizes centralized processing architecture with MCMERC325C CPU based on functional modular design concepts. The on-board computer consists of PM32 Module, TC-TM Module, IO Module and Power module. The IEEE-1355 DS/DE, or SpaceWire, provides a standard communication interface between module. It also provides simple cross-strap design for redundancy management and increases re-usability of the modules.

  • PDF

Engineering Model Design and Implementation of STSAT-2 On-board computer (과학기술위성 2호 탑재 컴퓨터의 EM 개발 및 구현)

  • Yu, Chang-Wan;Im, Jong-Tae;Nam, Myeong-Ryong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.101-105
    • /
    • 2006
  • The Engineering Model of STSAT-2 on-board computer(OBC) was developed and tested completely with other sub-systems. The on-board computer of STSAT-2 has a high- performance PowerPC processors and a structure of centralized network communication. In addition, a lot of logics are implemented by Field Programmable Gate Array, such as interrupt controller, watchdog timer and UART. It could make the weight and size of OBC lighter and smaller. Also, the STSAT-2 on-board computer has more improved tolerance against Single Event Upsets and faults than that of the STSAT-1.

The OBC Reconfiguration Test on LEO Satellite (저궤도 위성에서 위성탑재컴퓨터의 재구성 시험)

  • Jeong, Jae-Yeop;Lee, Cheol-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.103-107
    • /
    • 2017
  • The Satellite OBC(On Board Computer) manages critical functionality such as satellite attitude control, fault management, payload management, command/telemetry processing etc. The OBC consist of various modules. Each module perform mission critical operation. So all modules designed as hot or cold redundancy architecture. The redundancy design gives a guarantee high reliability and it allows normal operation of satellite using reconfiguration capability. In this paper, introduces reconfiguration unit operation and describe the results of testing in the ETB.

Design and Implementation of On-board Computers for KAISTSAT-4 (과학위성 1호 탑재 컴퓨터의 설계 및 구현)

  • 곽성우;류상문;박홍영;오대수;유관호;최병재;김병국
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.105-111
    • /
    • 2003
  • Qualification Model of On-board Computer (OBC) for KAISTSAT-4 was developed. The OBC of KAISTASAT-4 has some improved features compared with that of KAISTSAT-3: To reduce weight and size of OBC many logics are implemented by FPGAs, and a network controller is included in OBC to access the satellite network with high speed. Also, the developed OBC has an improved tolerance against SEUs and faults. The OBC was fully tested under simulated space environment with no errors.

Development of Single Board Computer (SBC) for Nano/Pico Small Satellites (초소형위성용 단일보드 탑재컴퓨터의 개발)

  • Kim, Young-Hyun;Moon, Byoung-Young;Lee, Bo-Ra;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.101-110
    • /
    • 2004
  • Flight and Qualification Models of Single Board Computer (SBC), called On-Board Computer (OBC), for HAUSAT-l picosatellite, which is scheduled to launch on September, 2004 by Russian "Dnepr" launch vehicle, have been developed. The OBC of HAUSAT-1 has been designed with some improved features compared to other picosatellites. A multifunctional controller and up-to-date SPI (Serial Peripheral Interface) and 1-Wire interface are implemented to simplify the harness routing and to minimize the mass and size of OBC. The improved fault-tolerant architecture design methodology is incorporated in the HAUSAT-1 OBC to protect against space radiation environment. The functions of the OBC were fully tested and verified by the Electrical Test Bed (ETB) model. This paper is also addressing the environmental test results, such as random vibration and thermal vacuum tests.

On Board Computer Design, Analysis and Test for KOMPSAT2 (KOMPSAT2 탑재컴퓨터 설계, 성능 분석 및 시험)

  • 조영호;심재선
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.571-577
    • /
    • 2004
  • In this paper, we describe the structure, function and the design factor of common module for KOMPSAT-2 OBC, which will be launched in 2005. By analysing OBC's performance, we can know the throughput and how much improve performance than KOMPSAT-l. it is used in the satellite mission design by system engineer. We verify the usefulness of common module for KOMPSAT-2 OBC through environment test.

Algorithm to cope with SEUs(Single Event Upsets) on STSAT-1 OBC(On-board Computer) (과학기술위성 1호 탑재 컴퓨터(On-board Computer)에서의 SEUs(Single Event Upsets) 극복 알고리즘)

  • Chung, Sung-In;Park, Hong-Young;Lee, Heung-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.10
    • /
    • pp.10-16
    • /
    • 2008
  • Generally, the satellite circling round in a low orbit goes through Van Allen belt connecting with the magnetic fold, in which electronic components are easily damaged and shortened by charged particles moving in a cycle between the South Pole and the North Pole. In particular, Single Event Upset(SEU) by radiation could cause electronic device on satellite to malfunction. Based on the idea mentioned above, this study considersabout SEU effect on the On-board Computer(OBC) of STSAT-1 in the space environment radiation, and shows algorithm to cope with SEUs. In this experiment, it also is shown that the repetitive memory read/write operation called memory wash is needed to prevent the accumulation of SEUs and the choice for the period of memory wash is examined. In conclusion, it is expected that this research not only contributes to understand low capacity of On-board Computer(OBC) on Low Earth Orbit satellite(LEOS) and SaTReC Technology satellite(STSAT) series, but also makes good use of each module development of Korea Multi-Purpose Satellite(COMPSAT) series.

Design and Implementation of a Processor Monitor and Fault Injection System for Next Generation Spacecraft Computer Board (차세대 위성탑재컴퓨터를 위한 프로세서 모니터 및 고장주입 시스템의 설계 및 구현)

  • Jeong, Jae-Yeop;Choi, Jong-Wook;Cheon, Yee-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.97-103
    • /
    • 2014
  • In order to verify normal operation of satellite OBC(On Board Computer), it is essential that processor monitoring and debugging. So we are using the GRMON of Aeroflex Gaisler. It provides a lot of features for debugging of LEON processor but we can't use that features on the NGSCB(Next Generation Spacecraft Computer Board) except a few things. So the cost-effectiveness is very low. And for hardware fault injection, we are using a method of modify satellite flight software, because we can't modify GRMON. This method can not guarantee normal operation of the satellite flight software. So in this paper we were developed the processor monitoring and fault injection tool for NGSCB.

TIME SYNCHRONIZATION STRATEGY BETWEEN ON-BOARD COMPUTER AND FIMS ON STSAT-1 (과학기술위성 1호 탑재 컴퓨터와 탑재체 FIMS의 시간 동기화 기법)

  • 곽성우;박홍영
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.2
    • /
    • pp.109-120
    • /
    • 2004
  • STSAT-1 was launched on sep. 2003 with the main payload of Far Ultra-violet Imaging Spectrograph(FIMS). The mission of FIMS is to observe universe and aurora. In this paper, we suggest a simple and reliable strategy adopted in STSAT-1 to synchronize time between On-board Computer(OBC) and FIMS. For the characteristics of STSAT-1, this strategy is devised to maintain reliability of satellite system and to reduce implementation cost by using minimized electronic circuits. We suggested two methods with different synchronization resolutions to cope with unexpected faults in space. The backup method with low resolution can be activated when the main has some problems.

Development of Virtual Machine for Spacecraft Computer (인공위성 탑재 컴퓨터를 위한 가상머신의 개발)

  • Jeong, Hyeon-A;Joe, Hyun-Woo;Dupre, Vincent;Cheon, Yee-Jin;Kang, Soo-Yeon;Kim, Hyung-Shin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06b
    • /
    • pp.361-363
    • /
    • 2011
  • 인공위성 탑재 컴퓨터는 위성 운영의 핵심 서브 시스템으로, 탑재 컴퓨터에 내장되는 OBS (On-Board Software) 의 복잡도가 증하고, 새로운 프로세서가 지속적으로 채택됨에 따라 재사용 가능한 소프트웨어의 필요성이 요구되고 있다. 본 논문에서는 소프트웨어의 재활용성을 제고하는 방법 중 하나로 Java VM과 유사한 가상머신인 SpaceApp VM을 제안하고 이를 구현하였다. SpaceApp 은 SpaceApp VM이 실행시키는 프로그램으로 Java의 WORA (Write Once Read Anywhere)의 개념을 위성 분야에 적용시킨 것이다. 본 연구에서는 SpaceApp VM의 설계와 개발에 대하여 설명한다.