• Title/Summary/Keyword: 탐지 알고리즘

Search Result 1,463, Processing Time 0.024 seconds

Performance Analysis of DoS/DDoS Attack Detection Algorithms using Different False Alarm Rates (False Alarm Rate 변화에 따른 DoS/DDoS 탐지 알고리즘의 성능 분석)

  • Jang, Beom-Soo;Lee, Joo-Young;Jung, Jae-Il
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.139-149
    • /
    • 2010
  • Internet was designed for network scalability and best-effort service which makes all hosts connected to Internet to be vulnerable against attack. Many papers have been proposed about attack detection algorithms against the attack using IP spoofing and DoS/DDoS attack. Purpose of DoS/DDoS attack is achieved in short period after the attack begins. Therefore, DoS/DDoS attack should be detected as soon as possible. Attack detection algorithms using false alarm rates consist of the false negative rate and the false positive rate. Moreover, they are important metrics to evaluate the attack detections. In this paper, we analyze the performance of the attack detection algorithms using the impact of false negative rate and false positive rate variation to the normal traffic and the attack traffic by simulations. As the result of this, we find that the number of passed attack packets is in the proportion to the false negative rate and the number of passed normal packets is in the inverse proportion to the false positive rate. We also analyze the limits of attack detection due to the relation between the false negative rate and the false positive rate. Finally, we propose a solution to minimize the limits of attack detection algorithms by defining the network state using the ratio between the number of packets classified as attack packets and the number of packets classified as normal packets. We find the performance of attack detection algorithm is improved by passing the packets classified as attacks.

Comparative Analysis of Target Detection Algorithms in Hyperspectral Image (초분광영상에 대한 표적탐지 알고리즘의 적용성 분석)

  • Shin, Jung-Il;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.369-392
    • /
    • 2012
  • Recently, many target detection algorithms were developed for hyperspectral image. However, almost of these studies focused only accuracy from 1 or 2 data sets to validate and compare the algorithms although they give limited information to users. This study aimed to compare usability of target detection algorithms with various parameters. Five parameters were proposed to compare sensitivity in aspect of detection accuracy which are related with radiometric and spectral characteristics of target, background and image. Six target detection algorithms were compared in aspect of accuracy and efficiency (processing time) by variation of the parameters and image size, respectively. The results shown different usability of each algorithm by each parameter in aspect of accuracy. Second order statistics based algorithms needed relatively long processing time. Integrated usabilities of accuracy and efficiency were various by characteristics of target, background and image. Consequently, users would consider appropriate target detection algorithms by characteristics of data and purpose of detection.

Development of an algorithm for detecting sub-pixel scale forest fires using MODIS data (MODIS영상을 이용한 소규모 산불 탐지 기법 개발)

  • Kim, Sun-Hwa;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.87-92
    • /
    • 2009
  • 현재 미국 NASA에서는 전 지구에서 일별 발생하는 산불 탐지 영상(MOD14 product)을 제작, 배포하고 있다. 그러나, 이러한 MOD14 영상은 MODIS 자체의 낮은 공간해상도로 인하여 우리나라와 같이 소규모 산불이 발생하는 지역에서는 산불 탐지 정확도가 매우 낮게 나타났다. 본 연구에서는 기존의 MODIS 산불 지도에서 탐지되지 못한 소규모 산불을 대상으로 혼합화소분석기법(spectral mixed analysis)을 적용한 새로운 산불 탐지 알고리즘을 제시하였다. 새로운 산불 탐지 알고리즘은 진행산불 탐지 알고리즘과 연소지 탐지 알고리즘으로 구성된다. 소규모 산불이 170건 이상 발생한 2004년과 2005년 4월 남한지역을 대상으로 적용한 결과 1ha 규모의 연소지 탐지가 가능하게 되었으며, 연구 결과 소규모 진행산불과 연소지에 대해 70%이상의 탐지율을 확보하였으며, 40% 이하의 오탐지율(false alarm ratio)을 산출하였다.

  • PDF

Development of Early Tunnel Fire Detection algorithm Using the Image Processing (영상 처리 기법을 이용한 터널 내 화재의 조기 탐지 기법의 개발)

  • Lee, Byoung-Moo;Han, Don-Gil
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.499-504
    • /
    • 2006
  • 터널 내 화재 발생 시 대규모의 인명, 재산 피해가 발생하는데 이러한 상황을 조기에 탐지함으로써 피해를 최소화하기 위한 시스템이 필요하다. 또한 터널 내 설치된 CCTV를 사람이 24시간 감시하기에는 너무 어려운 점이 많다. 이에 따라 적절한 영상 처리를 통한 화염 및 연기 검출 시스템을 통해 경보를 알려줄 경우, 보다 편리하고 사람이 모니터 앞에 없을 때 화재 발생 시 화재를 검출할 수 있어 피해를 최소화 할 수 있다. 본 논문에서는 영상처리 기법을 이용하여 터널 안에서 발생한 화재 및 연기를 고속으로 탐지하기 위한 알고리즘을 제안하였다. 터널 안에서의 화재 탐지는 차량 조명 및 터널내의 조명등과 같은 여러 가지 상황에 의해 산불 탐지 알고리즘과 다른 독자적인 알고리즘의 개발이 요구된다. 본 논문에서 제시한 두 가지 알고리즘은 기존 알고리즘보다 정확한 위치 탐지와 초기 단계에서의 탐지가 가능하도록 되었다. 또한 우리는 실험 결과를 통해 각각의 성능을 비교함으로써 제시한 알고리즘의 타당성을 보여주었다.

  • PDF

감시정찰 센서네트워크의 표적 탐지 및 식별 알고리즘에 관한 연구

  • Sim, Hyeon-Min;Kim, Tae-Bok;Kim, Lee-Hyeong;Gang, Tae-In
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.11a
    • /
    • pp.324-328
    • /
    • 2007
  • 본 논문은 감시정찰 센서네트워크에서 센서노드의 주요 기능인 표적의 탐지 및 식별을 위한 알고리즘을 제안한다. 감시정찰 센서네트워크에서 각 센서노드는 노드의 크기 및 센서, 프로세서, 네트워크, 전원 등의 자원의 제약이 있기 때문에 침입하는 적의 탐지 및 종류 식별을 위해서는 효율적인 알고리즘의 선정과 최적화가 요구된다. 본 논문에서는 음향, 진동, PIR, 자기 센서 등을 이용하여 사람, 차량 및 궤도 차량의 침입을 탐지하기 위한 적응 임계값 알고리즘과 그 종류를 식별하기 위한 최대우도추정 기법, k-최근접 이웃 추정 기법에 기반한 표적의 탐지 및 식별 알고리즘을 제안한다. 실험결과 음향 및 진동 센서에 의한 차량의 탐지, PIR 센서에 의한 사람의 탐지가 가능함을 확인할 수 있었으며 주파수 특징점을 이용하여 차량과 궤도차량의 종류식별이 가능함을 확인할 수 있었다.

  • PDF

Algorithm for Detecting Malicious Code in Mobile Environment Using Deep Learning (딥러닝을 이용한 모바일 환경에서 변종 악성코드 탐지 알고리즘)

  • Woo, Sung-hee;Cho, Young-bok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.306-308
    • /
    • 2018
  • This paper proposes a variant malicious code detection algorithm in a mobile environment using a deep learning algorithm. In order to solve the problem of malicious code detection method based on Android, we have proved high detection rate through signature based malicious code detection method and realtime malicious file detection algorithm using machine learning method.

  • PDF

Comparative Analysis of Unsupervised Learning Algorithm for Generating Network based Anomaly Behaviors Detection Model (네트워크기반 비정상행위 탐지모델 생성을 위한 비감독 학습 알고리즘 비교분석)

  • Lee, Hyo-Seong;Sim, Chul-Jun;Won, Il-Yong;Lee, Chang-Hun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11b
    • /
    • pp.869-872
    • /
    • 2002
  • 네트워크 기반 침입탐지시스템은 연속적으로 발생하는 패킷의 무손실 축소와, 패킷으로 정상 또는 비정상 행위패턴을 정확히 모델링한 모델 생성이 전체성능을 판단하는 중요한 요소가 된다. 네트워크 기반 비정상행위 판정 침입탐지시스템에서는 이러한 탐지모델 구축을 위해 주로 감독학습 알고리즘을 사용한다. 본 논문은 탐지모델 구축에 사용하는 감독 학습 방식이 가지는 문제점을 지적하고, 그에 대한 대안으로 비감독 학습방식의 학습알고리즘을 제안한다. 감독 학습을 사용하여 탐지모델을 구축하기 위해서는 정상행위의 패킷을 취합해야 하는 사전 부담이 있는 반면에 비감독 학습을 사용하게 되면 이러한 사전작업 없이 탐지모델을 구축할 수 있다. 본 논문에서는 비감독학습 알고리즘을 비교 분석하기 위해서 COBWEB, k-means, Autoclass 알고리즘을 사용했으며, 성능을 평가하기 위해서 비정상행위도(Abnormal Behavior Level)를 계산하여 에러율을 구하였다.

  • PDF

Pothole Detection Algorithm Based on Saliency Map for Improving Detection Performance (포트홀 탐지 정확도 향상을 위한 Saliency Map 기반 포트홀 탐지 알고리즘)

  • Jo, Young-Tae;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.104-114
    • /
    • 2016
  • Potholes have caused diverse problems such as wheel damage and car accident. A pothole detection technology is the most important to provide efficient pothole maintenance. The previous pothole detections have been performed by manual reporting methods. Thus, the problems caused by potholes have not been solved previously. Recently, many pothole detection systems based on video cameras have been studied, which can be implemented at low costs. In this paper, we propose a new pothole detection algorithm based on saliency map information in order to improve our previously developed algorithm. Our previous algorithm shows wrong detection with complicated situations such as the potholes overlapping with shades and similar surface textures with normal road surfaces. To address the problems, the proposed algorithm extracts more accurate pothole regions using the saliency map information, which consists of candidate extraction and decision. The experimental results show that the proposed algorithm shows better performance than our previous algorithm.

Design and Implementation of the Intrusion Detection Pattern Algorithm Based on Data Mining (데이터 마이닝 기반 침입탐지 패턴 알고리즘의 설계 및 구현)

  • Lee, Sang-Hoon;Soh, Jin
    • The KIPS Transactions:PartC
    • /
    • v.10C no.6
    • /
    • pp.717-726
    • /
    • 2003
  • In this paper, we analyze the associated rule based deductive algorithm which creates the rules automatically for intrusion detection from the vast packet data. Based on the result, we also suggest the deductive algorithm which creates the rules of intrusion pattern fast in order to apply the intrusion detection systems. The deductive algorithm proposed is designed suitable to the concept of clustering which classifies and deletes the large data. This algorithm has direct relation with the method of pattern generation and analyzing module of the intrusion detection system. This can also extend the appication range and increase the detection speed of exiting intrusion detection system as the rule database is constructed for the pattern management of the intrusion detection system. The proposed pattern generation technique of the deductive algorithm is used to the algorithm is used to the algorithm which can be changed by the supporting rate of the data created from the intrusion detection system. Fanally, we analyze the possibility of the speed improvement of the rule generation with the algorithm simulation.

Anomaly Event Detection Algorithm of Single-person Households Fusing Vision, Activity, and LiDAR Sensors

  • Lee, Do-Hyeon;Ahn, Jun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.6
    • /
    • pp.23-31
    • /
    • 2022
  • Due to the recent outbreak of COVID-19 and an aging population and an increase in single-person households, the amount of time that household members spend doing various activities at home has increased significantly. In this study, we propose an algorithm for detecting anomalies in members of single-person households, including the elderly, based on the results of human movement and fall detection using an image sensor algorithm through home CCTV, an activity sensor algorithm using an acceleration sensor built into a smartphone, and a 2D LiDAR sensor-based LiDAR sensor algorithm. However, each single sensor-based algorithm has a disadvantage in that it is difficult to detect anomalies in a specific situation due to the limitations of the sensor. Accordingly, rather than using only a single sensor-based algorithm, we developed a fusion method that combines each algorithm to detect anomalies in various situations. We evaluated the performance of algorithms through the data collected by each sensor, and show that even in situations where only one algorithm cannot be used to detect accurate anomaly event through certain scenarios we can complement each other to efficiently detect accurate anomaly event.