• Title/Summary/Keyword: 탐지 및 식별

Search Result 301, Processing Time 0.036 seconds

2018 정보보호 R&D 챌린지 - 차량주행 데이터기반 도난탐지 트랙 -

  • Kwak, Byung Il;Kim, Huy Kang
    • Review of KIISC
    • /
    • v.29 no.1
    • /
    • pp.13-19
    • /
    • 2019
  • 나날이 발전하고 있는 ICT 기술과 차량과의 융합은 차량을 대상으로 하는 사이버 위협과 공격을 더욱 증대시킨다. 그러나 차량 보안을 연구하는 산업계, 학계 연구 그룹들 또한 다양한 접근 방법을 통해 이러한 위협과 공격을 앞서 예방하고 탐지하기 위해 노력하고 있다. 2018 정보보호 R&D 데이터 챌린지에서는 차량주행 데이터기반 도난탐지 트랙을 마련하였다. 이는 운전자별 주행 데이터에 대한 분석을 통해 현재 주행 중인 운전자를 식별하는 챌린지로써 국내 및 해외에서 처음으로 진행된 트랙이다. 이번 2018 정보보호 R&D 데이터 챌린지 중 차량주행 데이터기반 도난탐지 트랙에 참가한 참가자들은 주행 데이터를 통계적 기반으로 분석하여 모델링 하였으며, 분석하는 과정에 있어 의미 있는 분류 결과를 도출해 내었다. 일반적으로, 한 가정이 보유하고 있는 차량이 가족들 이외 다른 이들에게는 잘 공유되지 않는다는 점을 고려한다면, 비록 소수의 운전 참가자이지만 5명을 대상으로 하는 본 실험이 의미가 있다고 본다. 이번 정보보호 R&D 데이터 챌린지를 통해, 운전자 주행 데이터가 도난 탐지를 위한 운전자 분류뿐만 아니라, 운전자에게 특화된 의료와 보험과 같은 맞춤형 서비스를 제공할 수 있는 가능성을 확인할 수 있었다.

Social Network Spam Detection using Recursive Structure Features (소셜 네트워크 상에서의 재귀적 네트워크 구조 특성을 활용한 스팸탐지 기법)

  • Jang, Boyeon;Jeong, Sihyun;Kim, Chongkwon
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1231-1235
    • /
    • 2017
  • Given the network structure in online social network, it is important to determine a way to distinguish spam accounts from the network features. In online social network, the service provider attempts to detect social spamming to maintain their service quality. However the spammer group changes their strategies to avoid being detected. Even though the spammer attempts to act as legitimate users, certain distinguishable structural features are not easily changed. In this paper, we investigate a way to generate meaningful network structure features, and suggest spammer detection method using recursive structural features. From a result of real-world dataset experiment, we found that the proposed algorithm could improve the classification performance by about 8%.

A Study on Threat Detection Model using Cyber Strongholds (사이버 거점을 활용한 위협탐지모델 연구)

  • Inhwan Kim;Jiwon Kang;Hoonsang An;Byungkook Jeon
    • Convergence Security Journal
    • /
    • v.22 no.1
    • /
    • pp.19-27
    • /
    • 2022
  • With the innovative development of ICT technology, hacking techniques of hackers are also evolving into sophisticated and intelligent hacking techniques. Threat detection research to counter these cyber threats was mainly conducted in a passive way through hacking damage investigation and analysis, but recently, the importance of cyber threat information collection and analysis is increasing. A bot-type automation program is a rather active method of extracting malicious code by visiting a website to collect threat information or detect threats. However, this method also has a limitation in that it cannot prevent hacking damage because it is a method to identify hacking damage because malicious code has already been distributed or after being hacked. Therefore, to overcome these limitations, we propose a model that detects actual threats by acquiring and analyzing threat information while identifying and managing cyber bases. This model is an active and proactive method of collecting threat information or detecting threats outside the boundary such as a firewall. We designed a model for detecting threats using cyber strongholds and validated them in the defense environment.

A Smart Home-Based Elderly Emergency Detection and Response System (스마트 홈 기반 노약자 응급상황 탐지 및 대응 시스템)

  • Byeong-Sun Park;Do-Yeong Shin;Su-A-Yun;Chae-Won-Park;Min-Ho-Bae
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.998-999
    • /
    • 2023
  • 본 논문에서는 스마트 홈 기반 노약자 응급상황 탐지 및 대응 시스템을 설계하였다. 2 개의 레이다 센서를 활용하여 센서 데이터를 분석하고 분류하며, 사용자의 상태를 취침, 외출, 응급상황 총 3 가지 경우로 식별한다. AWS 서버의 데이터베이스를 통해 응급상황 및 낙상 감지 이력을 축적하여 맞춤형 서비스를 제공한다. 어플리케이션을 통해 응급상황 자동 신고 접수와 센서 오작동시 자동 신고 접수 수동 취소 기능을 제공하는 응급상황 탐지 및 대응 시스템을 소개한다.

시퀀스 패턴 마이닝 기법을 적용한 침입탐지 시스템의 경보데이터 패턴분석

  • Shin, Moon-Sun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.451-454
    • /
    • 2010
  • 침입탐지란 컴퓨터와 네트워크 자원에 대한 유해한 침입 행동을 식별하고 대응하는 과정이다. 점차적으로 시스템에 대한 침입의 유형들이 복잡해지고 전문적으로 이루어지면서 빠르고 정확한 대응을 할 수 있는 시스템이 요구되고 있다. 이에 대용량의 데이터를 분석하여 의미 있는 정보를 추출하는 데이터 마이닝 기법을 적용하여 지능적이고 자동화된 탐지 및 경보데이터 패턴 분석에 이용할 수 있다. 본 논문에서는 경보데이터 패턴 분석을 위해 시퀀스패턴기법을 적용한 경보데이터 마이닝 엔진을 구축한다. 구현된 경보데이터 마이닝 시스템은 기존의 시퀀스 패턴 알고리즘인 PrefixSpan 알고리즘을 확장 구현하여 경보데이터의 빈발 경보시퀀스 분석과 빈발 공격시퀀스 분석에 활용할 수 있다.

  • PDF

A Study on Automatic Target Recognition Using SAR Imagery (SAR 영상을 이용한 자동 표적 식별 기법에 대한 연구)

  • Park, Jong-Il;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1063-1069
    • /
    • 2011
  • NCTR(Non-Cooperative Target Recognition) and ATR(Automatic Target Recognition) are methodologies to identify military targets using radar, optical, and infrared images. Among them, a strategy to recognize ground targets using synthetic aperature radar(SAR) images is called SAR ATR. In general, SAR ATR consists of three sequential stages: detection, discrimination and classification. In this paper, a modification of the polar mapping classifier(PMC) to identify inverse SAR(ISAR) images has been made in order to apply it to SAR ATR. In addition, a preprocessing scheme can mitigate the effect from the clutter, and information on the shadow is employed to improve the classification accuracy.

A Study on the Safety of Flight(SOF) Assure through Aircraft Diagnostics Systems (항공기 진단계통을 통한 비행안전성 확보에 대한 연구)

  • Lim, Junwan
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.35-40
    • /
    • 2017
  • Aircraft diagnostic systems identify system failures and nip aircraft accidents in the bud by removing hazards that hinder Safety Of Flight (SOF). The necessity for diagnostic systems is increasing as aircraft manufacturing technology is modernized. Many countries have conducted studies and developed diagnostic systems. However, studies about diagnostic systems are very few in Korea. This study defines the scope of aircraft diagnostics systems and closely considers methods to ensure the Safety Of Flight (SOF) for military aircraft.

Analysis of Ship Classification Performances Using OpenSARShip DB (OpenSARShip DB를 이용한 선박식별 성능 분석)

  • Lee, Seung-Jae;Chae, Tae-Byeong;Kim, Kyung-Tae
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.801-810
    • /
    • 2018
  • Ship monitoring using satellite synthetic aperture radar (SAR) images consists of ship detection, ship discrimination, and ship classification. A large number of methods have been proposed to improve the detection and discrimination capabilities, while only a few studies exist for ship classification. Thus, many studies for the ship classification are needed to construct ship monitoring system having high performance. Note that constructing database (DB), which contains both SAR images and labels of various ships, is important for research on the ship classification. In the airborne SAR classification, many methods have been developed using moving and stationary target acquisition and recognition (MSTAR) DB. However, there has been no publicly available DB for research on the ship classification using satellite SAR images. Recently, Shanghai Key Laboratory has constructed OpenSARShip DB using both SAR images of various ships generated from Sentinel-1 satellite of European Space Agency (ESA) and automatic identification system (AIS) information. Thus, the applicability of OpenSARShip DB for ship classification should be investigated by using the concepts of airborne SAR classification which have shown high performances. In this study, ship classification using satellite SAR images are conducted by applying the concepts of airborne SAR classification to OpenSARShip DB, and then the applicability of OpenSARShip DB is investigated by analyzing the classification performances.

인공위성의 VTS 적용 연구 : 선박 탐지 및 분류

  • Yang, Chan-Su;Kim, Seung-Ryong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.41-42
    • /
    • 2019
  • 해양공간의 효율적인 활용과 해상사고 예방을 위하여 해상교통 현황 파악이 필요하다. 이를 위해서는 해상에서 운항하는 선박에 대한 면밀한 모니터링이 선행 되어야한다. 때문에 본 연구에서는 선박자동식별장치(Automatic Identification System, AIS)와 선박패스(V-Pass)를 활용하는 기존 모니터링 방법에서 나아가, 위성 자료를 활용한 연안 선박감시 방법을 해상교통관제(Vessel Traffic Service, VTS) 센터에서 활용하기 위한 방안을 제안한다. 위성 자료는 광범위한 영역에 대하여 다양한 정보를 획득할 수 있는 장점을 지니므로, 부산항 연안에서 수집한 AIS 데이터와 함께 딥 러닝 기반 선박 탐지 및 분류 모델에 활용함으로써, 보다 개선된 모니터링을 기대할 수 있다. 이를 활용하여 미식별 선박들의 출현 위치를 분석하고 나아가 선박의 종류를 예측함으로써, 상세한 해상교통 현황 파악 및 예측을 기대할 수 있다. 향후에는 선박의 종류 뿐 아니라 각 선박의 해상활동을 분석함으로써, 보다 체계적이고 실용적인 해양공간활용 계획수립에 도움이 될 수 있도록 개선할 계획이다.

  • PDF

Algorithm Implementation for Detection and Tracking of Ships Using FMCW Radar (FMCW Radar를 이용한 선박 탐지 및 추적 기법 구현)

  • Hong, Dan-Bee;Yang, Chan-Su
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • This study focuses on a ship detection and tracking method using Frequency Modulated Continuous Wave (FMCW) radar used for horizontal surveillance. In general, FMCW radar can play an important role in maritime surveillance, because it has many advantages such as low warm-up time, low power consumption, and its all weather performance. In this paper, we introduce an effective method for data and signal processing of ship's detecting and tracking using the X-band radar. Ships information was extracted using an image-based processing method such as the land masking and morphological filtering with a threshold for a cycle data merged from raw data (spoke data). After that, ships was tracked using search-window that is ship's expected rectangle area in the next frame considering expected maximum speed (19 kts) and interval time (5 sec). By using this method, the tracking results for most of the moving object tracking was successful and those results were compared with AIS (Automatic Identification System) for ships position. Therefore, it can be said that the practical application of this detection and tracking method using FMCW radar improve the maritime safety as well as expand the surveillance coverage cost-effectively. Algorithm improvements are required for an enhancement of small ship detection and tracking technique in the future.