• Title/Summary/Keyword: 탐지 모델

Search Result 1,651, Processing Time 0.028 seconds

Comparative Analysis of Unsupervised Learning Algorithm for Generating Network based Anomaly Behaviors Detection Model (네트워크기반 비정상행위 탐지모델 생성을 위한 비감독 학습 알고리즘 비교분석)

  • Lee, Hyo-Seong;Sim, Chul-Jun;Won, Il-Yong;Lee, Chang-Hun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11b
    • /
    • pp.869-872
    • /
    • 2002
  • 네트워크 기반 침입탐지시스템은 연속적으로 발생하는 패킷의 무손실 축소와, 패킷으로 정상 또는 비정상 행위패턴을 정확히 모델링한 모델 생성이 전체성능을 판단하는 중요한 요소가 된다. 네트워크 기반 비정상행위 판정 침입탐지시스템에서는 이러한 탐지모델 구축을 위해 주로 감독학습 알고리즘을 사용한다. 본 논문은 탐지모델 구축에 사용하는 감독 학습 방식이 가지는 문제점을 지적하고, 그에 대한 대안으로 비감독 학습방식의 학습알고리즘을 제안한다. 감독 학습을 사용하여 탐지모델을 구축하기 위해서는 정상행위의 패킷을 취합해야 하는 사전 부담이 있는 반면에 비감독 학습을 사용하게 되면 이러한 사전작업 없이 탐지모델을 구축할 수 있다. 본 논문에서는 비감독학습 알고리즘을 비교 분석하기 위해서 COBWEB, k-means, Autoclass 알고리즘을 사용했으며, 성능을 평가하기 위해서 비정상행위도(Abnormal Behavior Level)를 계산하여 에러율을 구하였다.

  • PDF

Research on Improving Fire Detection Artificial Intelligence Model Performance (화재 탐지 인공지능 모델 성능 개선 연구)

  • Lee, Jeong-Rok;Lee, Dae-Woong;Jeong, Sae-Hyun;Jung, Sang
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.202-203
    • /
    • 2023
  • 최근 화재 탐지 분야는 불꽃 연기의 특징과 인공지능 인식(Detection) 모델을 활용하여 탐지율을 높이려는 연구가 많이 진행되어 왔다. 기존 화재 탐지 정확도를 높이기 위한 모델 연구 이외에도 불꽃·연기의 특징을 다양한 방법으로 데이터 가공한 학습 데이터셋을 활용하는 연구들이 진행되고 있다. 본 논문에서는 화재 탐지시 불꽃/연기의 오탐지율이 높은 것을 확인하고 오탐지율을 낮추기 위해 화재 상황을 인식하여 분류하는 방법과 데이터셋을 제안한다. 제안한 모델은 동영상을 학습데이터로 활용하여 화재 상황의 특징을 추출하여 분류모델에 적용하였다. 평가는 한국정보화진흥원(NIA)에서 진행하는 화재 데이터셋을 이용하여 Yolov8, Slowfast의 모델 성능을 비교 및 분석하였다.

  • PDF

Integrated Pattern Model for Intrusion Detection under Heterogeneous IDS Environment (이기종 IDS 환경에서 효과적인 침입탐지를 위한 통합패턴 모델)

  • Kim, Chan-Il;Kim, Sang-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05c
    • /
    • pp.2025-2028
    • /
    • 2003
  • 다양한 위협과 침입공격에 노출되어 있는 조직의 경우, 특정 제품에서 제공하는 한정된 침입탐지패턴의 한계를 극복하여 침입사건을 효과적으로 탐지하여 대응하기 위하여 이기종 침입탐지시스템 설치 및 운용이 요구된다. 이기종 침입탐지시스템 운용은 침입탐지 감사데이터 포맷이 제품별로 상이하고, 두개 제품 이상에 구현된 동일한 침입탐지 패턴이라도 설계의 차이점에 기인하여 오판률 가능성이 증가할 가능성이 있으며, 특히 탐지사건에 대한 대응으로 e-mail, SMS 등을 이용할 경우 중복 탐지로 인한 과도한 대응 등의 문제점이 있을 수 있으므로 이기종 침입탐지시스템 운영 환경에 적합한 기종간 통합 및 대응 모델과 관련 모듈 설계에 관한 연구가 필요하다 본 논문에서는 최근 연구되는 Aggregation 및 Correlation 개념을 적용하여 이기종 침입탐지시스템 운용 환경에서 침입탐지패턴 통합 및 대응을 위한 요구사항을 도출하고 통합 및 대응을 위한 IPMAC 모델 및 탐지알고리즘을 제시하여 관련 모듈을 설계 및 구현한 결과를 제안한다.

  • PDF

Detection Model based on Deeplearning through the Characteristics Image of Malware (악성코드의 특성 이미지화를 통한 딥러닝 기반의 탐지 모델)

  • Hwang, Yoon-Cheol;Mun, Hyung-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.137-142
    • /
    • 2021
  • Although the internet has gained many conveniences and benefits, it is causing economic and social damage to users due to intelligent malware. Most of the signature-based anti-virus programs are used to detect and defend this, but it is insufficient to prevent malware variants becoming more intelligent. Therefore, we proposes a model that detects and defends the intelligent malware that is pouring out in the paper. The proposed model learns by imaging the characteristics of malware based on deeplearning, and detects newly detected malware variants using the learned model. It was shown that the proposed model detects not only the existing malware but also most of the variants that transform the existing malware.

Design and Analysis of Multiple Intrusion Detection Model (다중 침입 탐지 모델의 설계와 분석)

  • Lee, Yo-Seob
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.6
    • /
    • pp.619-626
    • /
    • 2016
  • Intrusion detection model detects a intrusion when intrusion behaviour occurred. The model analyzes a variety of intrusion pattern and supports a modeling method to represent for a intrusion pattern efficiently. Particularly, the model defines classes of intrusion pattern and supports modeling method that detects a network level intrusion through multiple hosts for multiple intrusions. In this paper, proposes a multiple intrusion detection model that support a verification method for intrusion detection systems and verifies a safeness of proposed model and compares with other models.

Adversarial Attack against Deep Learning Based Vulnerability Detection (딥러닝 기반의 코드 취약점 탐지 모델의 적대적 공격)

  • Eun Jung;Hyoungshick Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.352-353
    • /
    • 2024
  • 소프트웨어 보안의 근본적인 문제인 보안 취약점을 해결하기 위해 노력한 결과, 딥러닝 기반의 코드 취약점 탐지 모델은 취약점 탐지에서 높은 탐지 정확도를 보여주고 있다. 하지만, 딥러닝 모델은 작은 변형에 민감하므로 적대적 공격에 취약하다. 딥러닝 기반 코드 취약점 탐지 모델에 대한 적대적 공격 방법을 제안한다.

Bidirectional LSTM based light-weighted malware detection model using Windows PE format binary data (윈도우 PE 포맷 바이너리 데이터를 활용한 Bidirectional LSTM 기반 경량 악성코드 탐지모델)

  • PARK, Kwang-Yun;LEE, Soo-Jin
    • Journal of Internet Computing and Services
    • /
    • v.23 no.1
    • /
    • pp.87-93
    • /
    • 2022
  • Since 99% of PCs operating in the defense domain use the Windows operating system, detection and response of Window-based malware is very important to keep the defense cyberspace safe. This paper proposes a model capable of detecting malware in a Windows PE (Portable Executable) format. The detection model was designed with an emphasis on rapid update of the training model to efficiently cope with rapidly increasing malware rather than the detection accuracy. Therefore, in order to improve the training speed, the detection model was designed based on a Bidirectional LSTM (Long Short Term Memory) network that can detect malware with minimal sequence data without complicated pre-processing. The experiment was conducted using the EMBER2018 dataset, As a result of training the model with feature sets consisting of three type of sequence data(Byte-Entropy Histogram, Byte Histogram, and String Distribution), accuracy of 90.79% was achieved. Meanwhile, it was confirmed that the training time was shortened to 1/4 compared to the existing detection model, enabling rapid update of the detection model to respond to new types of malware on the surge.

Analysis of Detecting Effectiveness of a Homing Torpedo using Combined Discrete Event & Discrete Time Simulation Model Architecture (이산 사건/이산 시간 혼합형 시뮬레이션 모델 구조를 사용한 유도 어뢰의 탐지 효과도 분석)

  • Ha, Sol;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.17-28
    • /
    • 2010
  • Since a homing torpedo system consists of various subsystems, organic interactions of which dictate the performance of the torpedo system, it is necessary to estimate the effects of individual subsystems in order to obtain an optimized design of the overall system. This paper attempts to gain some insight into the detection mechanism of a torpedo run, and analyze the relative importance of various parameters of a torpedo system. A database for the analysis was generated using a simulation model based on the combined discrete event and discrete time architecture. Multiple search schemes, including the snake-search method, were applied to the torpedo model, and some parameters of the torpedo were found to be stochastic. We then analyzed the effectiveness of torpedo’s detection capability according to the torpedo speed, the target speed, and the maximum detection range.

An Efficient Text Detection Model using Bidirectional Feature Fusion (양방향 특징 결합을 이용한 효율적 문자 탐지 모델)

  • Lim, Seong-Taek;Choi, Hoeryeon;Lee, Hong-Chul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.67-68
    • /
    • 2021
  • 기존 객체탐지는 경계 상자 회귀방식을 적용하였지만, 문자는 왜곡과 변형이 심한 특성을 가진 객체로 U-net 구조의 이미지 분할 방식을 사용하는 경우가 많다. 따라서 최근 문자 탐지는 통계적 모델에 비해 높은 정확도를 보이는 심층 신경망 기반의 모델 연구가 많이 진행되고 있다. 본 연구에서는 이미지 분할을 통한 양방향 특징 결합 기법을 사용한 문자 탐지 모델을 제안한다. 이미지 분할 방식은 메모리의 효율이 떨어지기 때문에 이를 극복하고자 특징 추출 단계에서 경량화된 네트워크를 적용하였다. 또한, 객체 탐지에서 큰 성과를 보인 양방향 특징 결합 모듈을 U-net 구조에 추가하여 추출된 특징이 효과적으로 결합 되는 결과를 얻었다. 제안하는 모델의 문자 탐지 성능은 합성 문자 데이터셋을 이용한 실험을 통해 기존의 U-net 구조의 이미지 분할 방식보다 향상되었음을 확인하였다.

  • PDF

A Network Intrusion Detection System Model for Detecting of Insertion and Evasion Attacks (삽입 및 배제 공격을 고려한 네트워크 침입 탐지 시스템 모델)

  • 차현철
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.4
    • /
    • pp.69-75
    • /
    • 2000
  • This paper proposes a network intrusion detection model which can detect the insertion and evasion attacks. These attacks can be prevented when some kind of information are available in the network intrusion detection system. We classified these information with three categories and used each category at setup phase and executing Phase. Within the proposed model, all necessary information which are related with networks and operating systems are maintained in the database and created as a table. This table is used during intrusion detection. The overheads of database and table may be simple in this model.

  • PDF