• Title/Summary/Keyword: 탐사 방법론

Search Result 142, Processing Time 0.029 seconds

A Study on the Distributional Characteristics of Unminable Manganese Nodule Area from the Investigation of Seafloor Photographs (해저면 영상 관찰을 통한 망간단괴 채광 장애지역 분포 특성 연구)

  • Kim, Hyun-Sub;Jung, Mee-Sook;Park, Cheong-Kee;Ko, Young-Tak
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.3
    • /
    • pp.173-182
    • /
    • 2007
  • It is well known that manganese nodules enriched with valuable metals are abundantly distributed in the abyssal plain area in the Clarion-Clipperton (C-C) fracture zone of the northeast Pacific. Previous studies using deep-sea camera (DSC) system reported different observations about the relation of seafloor topographic change and nodule abundance, and they were sometimes contradictory. Moreover, proper foundation on the estimation of DSC underwater position, was not introduced clearly. The variability of the mining condition of manganese nodule according to seafloor topography was examined in the Korea Deep Ocean Study (KODOS) area, located in the C-C zone. In this paper, it is suggested that the utilization of deep towing system such as DSC is very useful approach to whom are interested in analysing the distributional characteristics of manganese nodule filed and in selecting promising minable area. To this purpose, nodule abundance and detailed bathymetry were acquired using deep-sea camera system and multi-beam echo sounder, respectively on the seamount free abyssal hill area of southern part ($132^{\circ}10'W$, $9^{\circ}45'N$) in KODOS regime. Some reasonable assumptions were introduced to enhance the accuracy of estimated DSC sampling position. The accuracy in the result of estimated underwater position was verified indirectly through the comparison of measured abundances on the crossing point of neighboring DSC tracks. From the recorded seafloor images, not only nodules and sediments but cracks and cliffs could be also found frequently. The positions of these probable unminable area were calculated by use of the recorded time being encountered with them from the seafloor images of DSC. The results suggest that the unminable areas are mostly distributed on the slope sides and hill tops, where nodule collector can not travel over.

Sun-induced Fluorescence Data: Case of the Rice Paddy Field in Naju (논벼에서 관측된 태양 유도 엽록소 형광 자료: 나주에서 2020년 6월 10일부터 10월 5일까지)

  • Ryu, Jae-Hyun;Jang, Seon Woong;Kim, Hyunki;Moon, Hyun-Dong;Sin, Seo-Ho;Lee, Yang-Won;Cho, Jaeil
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.82-88
    • /
    • 2021
  • Sun-induced fluorescence (SIF) retrieval using remote sensing technique has been used in an effort to understand the photosynthetic efficiency and stress condition of vegetation. Although optical devices and SIF retrieval methodologies were established in order to retrieve SIF, the SIF measurements are domestically sparse. SIF data of paddy rice w as measured in Naju, South Korea from June 10, 2020 to October 5, 2020. The SIFs based red (O2A) and far-red (O2B) w ere retrieved using a spectral fitting method and an improved Fraunhofer line depth, and photosynthetically active radiation was also produced. In addition, the SIF data was filtered considering solar zenith angle, saturation conditions, the rapid and sudden change of solar irradiance, and sun glint. The provided SIF data can help to understand a SIF product and the filtering method of SIF data can contribute to producing high-quality SIF data.

Study on Site Selection of A/R CDM Using LiDAR Data (LiDAR 자료를 이용한 A/R CDM 대상지 선정에 관한 연구)

  • Guishan, Cui;Park, Taejin;Lee, Woo-Kyun;Lee, Jongyeol;Kwak, Doo-Ahn;Kwak, Hanbin
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.587-596
    • /
    • 2012
  • Verifying about eligibility of targeted site is necessary for execute Afforestation and Reforestation Clean Development Mechanism (A/R CDM) project which is followed by system of Kyoto protocol. The site have to be identified by which could not be in conformity with definition of forest. This study tried to propose a technology of classify for site selection of A/R CDM. We chose several parts of Yangpyeng as study area and applied LiDAR data and remotely sensed imagery for considering about tree height, degree of crown closure, and land area which 3 factors for identify forest. LiDAR data was used for offset the shortage of remotely sensed imagery that cannot perfectly determine the forest definition due to absence of 3-dimentional information, but can be obtained from LiDAR. Considering tree height, degree of crown closure, and land area simultaneously by moving window, classified fields to forest and non forest based on pixel size. As a result, 124.06 ha for suitable to doing plantation and approximately 357.02 ha are in negative. Technology that applied for analyzing will provide fundamental methodology not only site selection for A/R CDM, but will be utilized in other Kyoto protocol.

Formation Estimation of Shaly Sandstone Reservoir using Joint Inversion from Well Logging Data (복합역산을 이용한 물리검층자료로부터의 셰일성 사암 저류층의 지층 평가)

  • Choi, Yeonjin;Chung, Woo-Keen;Ha, Jiho;Shin, Sung-ryul
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • Well logging technologies are used to measure the physical properties of reservoirs through boreholes. These technologies have been utilized to understand reservoir characteristics, such as porosity, fluid saturation, etc., using equations based on rock physics models. The analysis of well logs is performed by selecting a reliable rock physics model adequate for reservoir conditions or characteristics, comparing the results using the Archie's equation or simandoux method, and determining the most feasible reservoir properties. In this study, we developed a joint inversion algorithm to estimate physical properties in shaly sandstone reservoirs based on the pre-existing algorithm for sandstone reservoirs. For this purpose, we proposed a rock physics model with respect to shale volume, constructed the Jacobian matrix, and performed the sensitivity analysis for understanding the relationship between well-logging data and rock properties. The joint inversion algorithm was implemented by adopting the least-squares method using probabilistic approach. The developed algorithm was applied to the well-logging data obtained from the Colony gas sandstone reservoir. The results were compared with the simandox method and the joint inversion algorithms of sand stone reservoirs.

GIS-based Data-driven Geological Data Integration using Fuzzy Logic: Theory and Application (퍼지 이론을 이용한 GIS기반 자료유도형 지질자료 통합의 이론과 응용)

  • ;;Chang-Jo F. Chung
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.243-255
    • /
    • 2003
  • The mathematical models for GIS-based spatial data integration have been developed for geological applications such as mineral potential mapping or landslide susceptibility analysis. Among various models, the effectiveness of fuzzy logic based integration of multiple sets of geological data is investigated and discussed. Unlike a traditional target-driven fuzzy integration approach, we propose a data-driven approach that is derived from statistical relationships between the integration target and related spatial geological data. The proposed approach consists of four analytical steps; data representation, fuzzy combination, defuzzification and validation. For data representation, the fuzzy membership functions based on the likelihood ratio functions are proposed. To integrate them, the fuzzy inference network is designed that can combine a variety of different fuzzy operators. Defuzzification is carried out to effectively visualize the relative possibility levels from the integrated results. Finally, a validation approach based on the spatial partitioning of integration targets is proposed to quantitatively compare various fuzzy integration maps and obtain a meaningful interpretation with respect to future events. The effectiveness and some suggestions of the schemes proposed here are illustrated by describing a case study for landslide susceptibility analysis. The case study demonstrates that the proposed schemes can effectively identify areas that are susceptible to landslides and ${\gamma}$ operator shows the better prediction power than the results using max and min operators from the validation procedure.

Investigation of Underground buried Cables based on Ground Penetrating Radar Data (지표 투과 레이더 데이터 기반 지하 매설 케이블 조사)

  • Choi, SungKi;Yoon, Hyung-Koo;Kim, YoungSeok;Kim, Sewon;Choi, Hyun-Jun;Min, Dae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.105-113
    • /
    • 2024
  • Underground buried cables can cause disconnections during the construction of roads and other subterranean structures due to uncertain designs. This paper describes experiments conducted to detect and verify the locations of these cables utilizing ground penetrating radar (GPR). The experiments were carried out at an active road construction site, where cable burial was anticipated. The GPR used operated within a frequency range of 400 MHz to 900 MHz to probe underground structures. The exploration methodology consisted of an initial GPR test to survey the entire area, followed by a secondary test informed by the results of the initial experiment, incorporating a diverse and increased number of lines. The findings confirmed the hyperbolic reflection patterns of cables at consistent locations along the same lines. These patterns were then compared to existing designs to corroborate the presence of cables at the identified locations. This research establishes an effective GPR methodology based on the electromagnetic wave reflection pattern, specifically the hyperbola, to detect difficult-to-locate underground buried cables.

TBM risk management system considering predicted ground condition ahead of tunnel face: methodology development and application (막장전방 예측기법에 근거한 TBM 터널의 리스크 관리 시스템 개발 및 현장적용)

  • Chung, Heeyoung;Park, Jeongjun;Lee, Kang-Hyun;Park, Jinho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • When utilizing a Tunnel Boring Machine (TBM) for tunnelling work, unexpected ground conditions can be encountered that are not predicted in the design stage. These include fractured zones or mixed ground conditions that are likely to reduce the stability of TBM excavation, and result in considerable economic losses such as construction delays or increases in costs. Minimizing these potential risks during tunnel construction is therefore a crucial issue in any mechanized tunneling project. This paper proposed the potential risk events that may occur due to risky ground conditions. A resistivity survey is utilized to predict the risky ground conditions ahead of the tunnel face during construction. The potential risk events are then evaluated based on their occurrence probability and impact. A TBM risk management system that can suggest proper solution methods (measures) for potential risk events is also developed. Multi-Criterion Decision Making (MCDM) is utilized to determine the optimal solution method (optimal measure) to handle risk events. Lastly, an actual construction site, at which there was a risk event during Earth Pressure-Balance (EPB) Shield TBM construction, is analyzed to verify the efficacy of the proposed system.

A Study on the Field Data Applicability of Seismic Data Processing using Open-source Software (Madagascar) (오픈-소스 자료처리 기술개발 소프트웨어(Madagascar)를 이용한 탄성파 현장자료 전산처리 적용성 연구)

  • Son, Woohyun;Kim, Byoung-yeop
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.171-182
    • /
    • 2018
  • We performed the seismic field data processing using an open-source software (Madagascar) to verify if it is applicable to processing of field data, which has low signal-to-noise ratio and high uncertainties in velocities. The Madagascar, based on Python, is usually supposed to be better in the development of processing technologies due to its capabilities of multidimensional data analysis and reproducibility. However, this open-source software has not been widely used so far for field data processing because of complicated interfaces and data structure system. To verify the effectiveness of the Madagascar software on field data, we applied it to a typical seismic data processing flow including data loading, geometry build-up, F-K filter, predictive deconvolution, velocity analysis, normal moveout correction, stack, and migration. The field data for the test were acquired in Gunsan Basin, Yellow Sea using a streamer consisting of 480 channels and 4 arrays of air-guns. The results at all processing step are compared with those processed with Landmark's ProMAX (SeisSpace R5000) which is a commercial processing software. Madagascar shows relatively high efficiencies in data IO and management as well as reproducibility. Additionally, it shows quick and exact calculations in some automated procedures such as stacking velocity analysis. There were no remarkable differences in the results after applying the signal enhancement flows of both software. For the deeper part of the substructure image, however, the commercial software shows better results than the open-source software. This is simply because the commercial software has various flows for de-multiple and provides interactive processing environments for delicate processing works compared to Madagascar. Considering that many researchers around the world are developing various data processing algorithms for Madagascar, we can expect that the open-source software such as Madagascar can be widely used for commercial-level processing with the strength of expandability, cost effectiveness and reproducibility.

Detection of Wildfire Burned Areas in California Using Deep Learning and Landsat 8 Images (딥러닝과 Landsat 8 영상을 이용한 캘리포니아 산불 피해지 탐지)

  • Youngmin Seo;Youjeong Youn;Seoyeon Kim;Jonggu Kang;Yemin Jeong;Soyeon Choi;Yungyo Im;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1413-1425
    • /
    • 2023
  • The increasing frequency of wildfires due to climate change is causing extreme loss of life and property. They cause loss of vegetation and affect ecosystem changes depending on their intensity and occurrence. Ecosystem changes, in turn, affect wildfire occurrence, causing secondary damage. Thus, accurate estimation of the areas affected by wildfires is fundamental. Satellite remote sensing is used for forest fire detection because it can rapidly acquire topographic and meteorological information about the affected area after forest fires. In addition, deep learning algorithms such as convolutional neural networks (CNN) and transformer models show high performance for more accurate monitoring of fire-burnt regions. To date, the application of deep learning models has been limited, and there is a scarcity of reports providing quantitative performance evaluations for practical field utilization. Hence, this study emphasizes a comparative analysis, exploring performance enhancements achieved through both model selection and data design. This study examined deep learning models for detecting wildfire-damaged areas using Landsat 8 satellite images in California. Also, we conducted a comprehensive comparison and analysis of the detection performance of multiple models, such as U-Net and High-Resolution Network-Object Contextual Representation (HRNet-OCR). Wildfire-related spectral indices such as normalized difference vegetation index (NDVI) and normalized burn ratio (NBR) were used as input channels for the deep learning models to reflect the degree of vegetation cover and surface moisture content. As a result, the mean intersection over union (mIoU) was 0.831 for U-Net and 0.848 for HRNet-OCR, showing high segmentation performance. The inclusion of spectral indices alongside the base wavelength bands resulted in increased metric values for all combinations, affirming that the augmentation of input data with spectral indices contributes to the refinement of pixels. This study can be applied to other satellite images to build a recovery strategy for fire-burnt areas.

Comparative Study on the Carbon Stock Changes Measurement Methodologies of Perennial Woody Crops-focusing on Overseas Cases (다년생 목본작물의 탄소축적 변화량 산정방법론 비교 연구-해외사례를 중심으로)

  • Hae-In Lee;Yong-Ju Lee;Kyeong-Hak Lee;Chang-Bae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.258-266
    • /
    • 2023
  • This study analyzed methodologies for estimating carbon stocks of perennial woody crops and the research cases in overseas countries. As a result, we found that Australia, Bulgaria, Canada, and Japan are using the stock-difference method, while Austria, Denmark, and Germany are estimating the change in the carbon stock based on the gain-loss method. In some overseas countries, the researches were conducted on estimating the carbon stock change using image data as tier 3 phase beyond the research developing country-specific factors as tier 2 phase. In South Korea, convergence studies as the third stage were conducted in forestry field, but advanced research in the agricultural field is at the beginning stage. Based on these results, we suggest directions for the following four future researches: 1) securing national-specific factors related to emissions and removals in the agricultural field through the development of allometric equation and carbon conversion factors for perennial woody crops to improve the completeness of emission and removals statistics, 2) implementing policy studies on the cultivation area calculation refinement with fruit tree-biomass-based maturity, 3) developing a more advanced estimation technique for perennial woody crops in the agricultural sector using allometric equation and remote sensing techniques based on the agricultural and forestry satellite scheduled to be launched in 2025, and to establish a matrix and monitoring system for perennial woody crop cultivation areas in the agricultural sector, Lastly, 4) estimating soil carbon stocks change, which is currently estimated by treating all agricultural areas as one, by sub-land classification to implement a dynamic carbon cycle model. This study suggests a detailed guideline and advanced methods of carbon stock change calculation for perennial woody crops, which supports 2050 Carbon Neutral Strategy of Ministry of Agriculture, Food, and Rural Affairs and activate related research in agricultural sector.