• Title/Summary/Keyword: 탐구 상황

Search Result 376, Processing Time 0.024 seconds

Development and Effectiveness of Learning Programs on Visualization of Data for Gifted Students in Elementary School Science - Focusing on Using the Tableau Program - (초등학교 과학영재 학생을 대상으로 한 데이터 시각화 학습 프로그램 개발 및 효과 - Tableau 프로그램 활용을 중심으로 -)

  • Kim, Hyunguk
    • Journal of Korean Elementary Science Education
    • /
    • v.43 no.1
    • /
    • pp.18-34
    • /
    • 2024
  • This study aimed to examine the effects of a science-learning program based on data visualization on the science inquiry and creative problem-solving abilities of elementary school science-gifted students. Accordingly, this research developed a data visualization science-learning program using Tableau, which had twelve sessions. The subjects encompassed 61 students in three gifted classes taught by the researcher. The scientific inquiry ability test and creative problem-solving ability test modified to suit the environment and situation were given to the subjects before and after the treatment. The results confirmed that science learning based on data visualization had no significant impact on basic science inquiry skills. Among the subdomains, significant results were obtained only in the reasoning subdomain. Moreover, integrative inquiry ability was significantly affected, unlike basic inquiry abilities. Among the five subdomains, significant differences were observed in three subdomains (data conversion, data interpretation, and variable control). However, concerning the generation of hypotheses and the control of variables, students exhibited confusion regarding the process of variable control and the exact concept of hypothesis development. This study also evaluated the effects of the program's application on creative problem-solving abilities and found a significant impact. Additionally, it was significantly different in all four subdomains. The results were interpreted to be owing to the students' mastery of Tableau's features, collaborative learning through discussion and debate, and the thematic impact of the data visualization program emphasizing procedural thinking. Finally, this study presented implications for science learning based on data visualization and the future direction of education.

Middle School Students' Construction of Physics Inquiry Problems and Variables Isolation and Clarification during Small Group Open-inquiry Activities (중학생의 소집단 자유탐구활동 중 물리 영역 탐구문제의 구성과 변인 추출 및 명료화 과정)

  • Yoo, Junehee;Kim, Jongsook
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.5
    • /
    • pp.903-927
    • /
    • 2012
  • The study aimed to analyze middle school students construction of physics inquiry problems for open inquiry from the viewpoint of variable isolation and clarification, and investigate students' difficulties during the processes of variable isolation and clarification to get implications for teaching and learning strategies for small group open inquiry activities which have been included in the 2007 national curriculum. The participants were 4 students who had attended an outreach program for the science gifted run by a university institution located in Seoul area. They performed an open inquiry on egg drop for 13 lessons for 30 hours. Level descriptions for variable isolation and clarification have been developed and applied to analyze students' inquiry problems and variables included by the problems. Students iterated inquiry processed 5 times and the inquiry problem showed progress gradually. Dependent variables have been isolated ahead and the levels of variable isolation and clarification showed higher than the independent variables. Many kinds of independent variables isolated extensively and the independent variables and control variables have been mingled. One of the reasons why students had some difficulties in isolation of independent variables could be the absence of theoretical models. The realities of school lab could restrict the variable isolation and clarification as well as topic selections. Some sensory or extensive variables such as broken eggs and drop height seem to be salient to be focused on as core variables. Lack of background knowledges could be one of the reasons for students' difficulties in variable clarification, such as theoretical definitions and operational definitions. As a result of lacking background knowledges, students could not construct theoretical models even though they could isolate and clarify variables as scientific lexical definitions. Some perceptions of inquiry as trial and error or reckless establishment of causal relations between variables could be accounted as one reason.

Effects of Providing Scientific Information on an Unexpected Phenomenon on High School Students' Setting Inquiry Problems (예상하지 못한 현상에 관한 과학적 정보 제공이 고등학생들의 탐구문제 설정에 미치는 영향)

  • Park, Chulkyu;Shin, Soyeun;Hong, Hun-Gi
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.2
    • /
    • pp.93-102
    • /
    • 2021
  • In this study, we investigated the characteristics of inquiry problems set by high school students who observed an 'unexpected phenomenon' and identified the effects of providing scientific information on setting inquiry problems. The subjects of this study were 126 eleventh grade students in Seoul that were randomly assigned to group A (N=66) and group B (N=60). In the study, watching a video of about 45 seconds of the unexpected phenomenon repeatedly for 20 minutes, all the students freely wrote inquiry problems that they wanted to carry out in their handouts. At this time, it is characterized that only the handout of group B additionally included scientific information on the unexpected phenomenon. As a result of the study, students, regardless of group, set more 'curiosity-oriented inquiry problems (i.e., focusing on inquiries they want to do rather than revealing what might be the cause of the phenomenon)' rather than going into a 'cause-oriented inquiry problem solving (i.e., revealing the cause of the phenomenon).' Among the curiosity-oriented inquiry problems, most of them were 'new-result inquiry problems (i.e., investigating what new results will occur by simply manipulating experimental situations).' It was also found that students who were provided with the scientific information tended to set significantly more inquiry problems using the provided information than those who were not (χ2(1)=8.996, p<.01), nevertheless the students with the scientific information did not set significantly more cause-oriented inquiry problems (χ2(1)=1.376, p>.05). The findings have been discussed from the four perspectives (i.e., lack of provided information, lack of opportunities to internalize the provided information, personal curiosity-seeking, and intuitive thinking), and implications for inquiry problem setting were suggested.

Pre-service Elementary Teachers' Exploration of Children's Science Ideas (초등 예비교사의 아동의 과학 개념 조사)

  • Yoon, Hye-Gyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.2
    • /
    • pp.164-180
    • /
    • 2011
  • In this study, pre-service elementary teachers (n=68) participated in an inquiry of exploring children's science ideas as group work. After conducting interviews with children, the pre-service teachers analyzed their science ideas on specific concept and propose a teaching plan based on their findings. This paper aimed to find the positive learning experiences of the pre-service teachers by looking into their inquiry process. Questionnaire, researcher's journal, classroom videos and final reports were collected and analyzed for this multiple case study. Four representative groups were chosen and interviewed after submitting their final reports for in-depth understanding of their inquiry process. The positive learning experiences found in the process of their inquiry into children's science ideas were as follows: (1) exploring children's ideas have brought the opportunity for enhancing pre-service teachers' science content knowledge. (2) the pre-service teachers developed their ability in creating questions that probe into children's understanding. (3) the pre-service teachers recognized that children have various incomplete and unstable science ideas. (4) the pre-service teachers could suggest teaching strategy based on their findings.

Development And Application of CNP Model for the Enhancing Creativity of Scientifically Gifted Students (과학영재의 창의성 신장을 위한 CNP 모형의 개발과 적용)

  • Hwang, Yo-Han;Park, Jong-Seok
    • Journal of Gifted/Talented Education
    • /
    • v.20 no.3
    • /
    • pp.847-866
    • /
    • 2010
  • Enhancing creativity is possible to offer systematic education programs and several conditions as variable thinking, experiment lesson, opened-situation. We developed CNP model as program for enhancing creativity. The CNP model emphasizes that parts of problem finding, embodying and solving ability and includes scientific problem finding tool, Integrated Process Skills and Science Writing Heuristic. The CNP Model is comprised of six step. We developed teachers' guide and student's worksheets for application. Result of applied CNP model to students of scientifically gifted education center in K University, students were able to enhanced originality and fluency and had solved problems by creative way. And creative problem finding, embodying and solving ability were increased. Therefore, the CNP model was effective in enhancing the creativity of scientifically gifted.

Dewey's Pragmatic Conception of Value (듀이의 실용주의적 가치 개념)

  • Kook, Soon-ah
    • Journal of Korean Philosophical Society
    • /
    • v.137
    • /
    • pp.1-31
    • /
    • 2016
  • The aim of this paper is to put forward the significance that Dewey's naturalistic theory of value has today in examining how value arises from experience. This is a necessary discussion as logical-positivists bring about the problem of fact/value dichotomy and further deny the possibility of intellectual discussion on value judgments. In this situation, the task that the discussion on value must be resolved is to go beyond the problem of fact/value dichotomy and to confer objectivity upon value judgments. In the stream of analytic philosophy, the significance of Dewey's theory of value is revealed by how Putnam and Johnson receive it. To overcome the problem of dichotomy, Putnam asserts that they are entangled because the value arises from a criticism through scientific inquiry. Also Johnson proves that Dewey's moral deliberation as valuation is wedded with cognition, feeling, and imagination by the research on cognitive science and shows that Dewey's theory of value is un-relativistic because it is on the basis of shared experience. So, if the absolute value is not given to us, Dewey's theory of value shows us how value is made by open inquiry. It has the significance of proposing the direction that the theory of value orients itself today.

The practical use of process skill and the perception about hypothesis by secondary school science teachers (중등학교 과학 교사들의 탐구 과정의 활용 정도와 가설에 대한 인식)

  • Kim, Ji-Young;Kang, Soon-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.2
    • /
    • pp.258-267
    • /
    • 2006
  • The purpose of this study was to investigate the practical use of process skill under the seventh curriculum at secondary school and teachers' perceptions about hypothesis. Two hundred and twenty-two secondary science teachers responded to a survey. Among all process skills, data interpretation was found to be used most frequently by science teachers. The second most-commonly utilized skill was conclusion, and the least employed skill was hypothesis formation followed closely by data transformation. In addition to these results, the most difficult process skill practised by science teachers was hypothesis formation, followed by data transformation, and controling variables. A majority of science teachers (63.1%) properly defined hypothesis, but only a significant number (5.0%) chose the correct example about hypothesis in real-world contexts. More than ninety percent of science teachers believed the skill of hypothesis formation could be put to use in junior high to senior high school, but practical use of the skill, was too difficult for the science class

Development of Teaching Materials for the Nature of Science and Pilot Application to Scientifically Gifted Students (과학의 본성 지도자료 개발과 과학영재를 대상으로 한 시험적용)

  • Park, Jong-Won;Kim, Doo-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.2
    • /
    • pp.169-179
    • /
    • 2008
  • In this study, 46 teaching materials for understanding the nature of science (NOS) were developed based on the 42 statements describing the NOS. Each teaching material involves scientific knowledge and scientific inquiry skills as well as NOS statements. Teaching materials consist of students' learning worksheets and teachers' guides. Among the materials, 11 materials for understanding the nature of scientific thinking (NOST) were applied to 3 scientifically gifted students. As results, the degree of difficulty was appropriate and students showed interests in scientific thinking rather than new concepts or inquiry activities involved in the materials. It was expected that understating the NOST would be helpful for conducting scientific inquiry in more authentic way. And similarly to the Park's (2007) theoretical discussions about the relationship between the NOS and scientific creativity, students actually responded that undertrading the NOST could help their creativity. Therefore, it was expected that teaching the NOST would be plausible elements for teaching scientific creativity.

Development of Data-Driven Science Inquiry Model and Strategy for Cultivating Knowledge-Information-Processing Competency (지식정보처리역량 함양을 위한 데이터 기반 과학탐구 모형 개발)

  • Son, Mihyun;Jeong, Daehong
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.6
    • /
    • pp.657-670
    • /
    • 2020
  • The knowledge-information-processing competency is the most essential competency in a knowledge-information-based society and is the most fundamental competency in the new problem-solving ability. Data-driven science inquiry, which emphasizes how to find and solve problems using vast amounts of data and information, is a way to cultivate the problem-solving ability in a knowledge-information-based society. Therefore, this study aims to develop a teaching-learning model and strategy for data-driven science inquiry and to verify the validity of the model in terms of knowledge information processing competency. This study is developmental research. Based on literature, the initial model and strategy were developed, and the final model and teaching strategy were completed by securing external validity through on-site application and internal validity through expert advice. The development principle of the inquiry model is the literature study on science inquiry, data science, and a statistical problem-solving model based on resource-based learning theory, which is known to be effective for the knowledge-information-processing competency and critical thinking. This model is titled "Exploratory Scientific Data Analysis" The model consisted of selecting tools, collecting and analyzing data, finding problems and exploring problems. The teaching strategy is composed of seven principles necessary for each stage of the model, and is divided into instructional strategies and guidelines for environment composition. The development of the ESDA inquiry model and teaching strategy is not easy to generalize to the whole school level because the sample was not large, and research was qualitative. While this study has a limitation that a quantitative study over large number of students could not be carried out, it has significance that practical model and strategy was developed by approaching the knowledge-information-processing competency with respect of science inquiry.

A Study on the Autonomous Driving System Using Infant Motor Vehicle (유아전동차를 활용한 자율주행 시스템에 관한 연구)

  • Gyeong-Jin Kang;Il-Yong Chun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.1139-1140
    • /
    • 2023
  • 자율주행 시스템이 발전됨에 따라 더욱 효율적이고 안전성이 있는 실시간 제어와 알고리즘이 요구된다. 이러한 맥락에서, 본 논문은 유아용 전동차를 이용하여 다양한 상황 속 자율적이고 정교한 제어를 제시한다. 여러 센서에서 받아오는 정보를 가공하여 다음 행동에 대한 신호를 실시간으로 생성하여 안전하고 부드러운 자율주행 시스템 방법을 탐구한다.