• Title/Summary/Keyword: 탈질산화

Search Result 111, Processing Time 0.023 seconds

Effects of Rice Straw on the Microflora in Submerged Soil -I. Effects of Rice Straw on the Microflor in Relation to Nitrogen Metabolism in Submerged Soil (볏짚 시용(施用)이 논토양(土壤)의 미생물상(微生物相)에 미치는 영향(影響) -I. 질소대사(窒素代謝)에 관여(關與)하는 미생물(微生物)과 토양성분(土壤成分))

  • Kim, Yong-Woong;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.2
    • /
    • pp.82-89
    • /
    • 1984
  • These studies were carried out to investigate the effects of rice straw on microflora in relation to nitrogen metabolism in submerged soil. Rice plants were cultured in submerged soil to which rice straw was applied. In the submerged soil applied with rice straw the value of Eh lowered. pH was higher in the upper layer than in the lower. The content of iron(II) in submerged soil increased, while that of ammonium nitrogen decreased when rice straw was applied and nitrate-nitrogen was hardly detected during the rice cultivation period Under application of rice straw the number of denitrifying bacteria observed to increase at the early growing stage of rice plant and to decrease thereafter, and that of nitrate reducing bacteria increased at the late growing stage. The number of ammonium oxidizing bacteria and that of nitrite oxidizing bacteria decreased continually but the latter were rather sharply decreased.

  • PDF

Correlation Analysis Between DeNOx and $DeSO_2$ and Specific Energy Density in Pulse Corona Discharge (펄스 코로나 방건공정내에서의 비에너지 밀도에 따른 탈황.탈질 특성의 상관성 분석)

  • 정재우;이용환;최유리;조무현;남궁원
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.04a
    • /
    • pp.235-236
    • /
    • 2000
  • 배기가스의 처리를 위한 펄스 코로나 방전공정은 질소 산화물 및 황산화물을 동시에 제거할수 있는 효율적인 공정으로 알려져 있으며 현재 국내외에서 많은 연구들이 수행되고 있는 공정이다. 플라즈마 상태를 이용하는 펄스 코로나 방전공정에서 운전변수들의 변화는 플라즈마 특성을 변화시켜 공정의 효율성에 영향을 미치게 된다. 특히 플라즈마의 특성에 영향을 미치는 여러 가지 변수들 사이에는 강한 상호의존성을 갖고 있으므로 하나의 운전변수가 미치는 영향에 관한 정확한 규명은 매우 복잡하고 어려운 일이다. (중략)

  • PDF

Nitrogen Removal from ADEPT Effluent of Piggery Wastewater using Nitritation/Denitiritation System (ADEPT공정을 거친 돈사폐수의 아질산화-아탈질 공정을 이용한 질소제거)

  • Lee, Hwa-Sun;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.134-139
    • /
    • 2006
  • Partial nitirification and denitrification process has been reported to be technically feasible and economically favorable, especially for wastewater treatment with high ammonium concentration or low Carbon/Nitrogen ratio. This research was performed to survey nitrite accumulation by nitritation in treating ADEPT effluent of piggery wastewater, which contains highly concentrated ammonia. To estimate the possibility of nitrite accumulation, DO concentration and SRT were investigated as key operational parameters. This result proved that nitritation to nitrite was steadily obtained under short sludge retention time. Oxygen limitation was proved to be just a subsidiary parameter. Energy efficiency of nitritation-denitritation process was higher than complete nitrification-denitrification because external carbon requirement for denitritation could be saved. Though the influent contained significant nonbiodegradable organic substrate, total nitrogen removal efficiency was more than 51% in nitritation-denitritation system.

Sequencing batch reactor treating ship sewage and external carbon source (연속 회분식 공정을 이용한 선박오수와 외부탄소원의 혼합처리)

  • Park Sang-Ho;Choi Jeong-Hye;Ko Sung-Chul;Kim In-Soo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.147-152
    • /
    • 2004
  • In Sequence Batch Reactor (SBR), the removal efficiencies if nutrient materials such as nitrogen and phosphate depend highly on quantity and quality of organic carbon source. Food waste thai contains abundant organic materials has been produced in ship. The applicability if anaerobically fermented if food waste (AFFW) as an external carbon source was examined in the lab-scale SBR process operated at $25^{\circ}C$. With the addition if AFFW increased, average removal efficiencies if $COD_cr$, T-N, T-P changed to $98.5\%,\;95\%,\;93\%$, respectively. Denitrification rate is 0.30g $NO_3-N/g\;VSS{\cdot}day$. In summary, it was suggested tint AFFW sould be used as an economical and effective carbon source for the biological nitrogen and phosphate removal.

  • PDF

Positive Pilot Research of SBR Process with Flexible Vertical (가변형 간벽을 이용한 SBR 공정의 실증 Pilot 연구)

  • Kim, Man-Soo;Park, Jong-Woon;Park, Chul-Whi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.438-444
    • /
    • 2005
  • This study is to install the flexible vertical in order to separate not only the time but also the space in the single reactor by opening and closing the flexible vertical, and to intensify the aerobic, anaerobic and anoxic reactions by reducing the time to activate the microorganism for nitrification, denitrification, release of organic phosphate and luxury uptake of ortho-phosphate. Eventually the result of this study obtained each 90.9%, 76.4% for the removal efficiency of total nitrogen and phosphate. Also, content rate of phosphate at excess sludge was higher $25{\sim}30%$ for SBR reactor with the flexible verticals than existing SBR process. It would be concluded that SBR reactor with flexible verticals is promising for nitrogen and phosphate removal conditions than conventional SBR processes.

Enhanced NH3-SCR Activity of V/TiO2 Catalyst Prepared by Various Ball Mill Method (다양한 Ball Mill Method에 의해 제조된 V/TiO2 촉매의 NH3-SCR 활성 증진연구)

  • Kim, Dong Ho;Seo, Phill Won;Hong, Sung Chang
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.64-72
    • /
    • 2017
  • In this study, the selective catalytic reduction (SCR) for NOx removal was investigated in the temperature range of $150{\sim}400^{\circ}C$. XRD, BET and XPS analyses to determine the structural properties and valence state characteristics of the catalyst were performed. Various ball mill method were shown to a difference in activity at a low temperature below $250^{\circ}C$. Based on the catalyst with the highest denitrification efficiency, the ball mill time was the best result at 3 h. As a result of XPS analysis, the presence of the non-stoichiometric vanadium species and the increase of the number of atoms were attributed to a positive effect in the SCR reaction. it was confirmed that the correlation between the amount of lattice oxygen and the denitrification efficiency through the $O_2$ on-off experiment, and it was in a proportional relationship to each other.

Simultaneous Removal of Ammonium and Nitrate by Natural Zeolite and Bacteria (천연 zeolite와 미생물을 이용한 NH4+ 및 NO3-의 동시 제거)

  • Lee, Seon-hee;Lee, Ji-Hye;Kim, Duk gyum;Lee, Chang-Soo;Kang, Kyung Suk;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.971-976
    • /
    • 2008
  • Water pollution by ammonium ion and nitrate is a common and growing problem in the ecosystem. Process of biological removal consists of nitrification and denitrification by bacteria. Ammonium is oxidized generally to nitrate by nitrification and nitrate is reduced to dinitrogen gas in the subsequent denitrification process. Although natural zeolite is well known for its ability to preferentially remove ammonium, it is not sufficiently removing ammonium ion and nitrate by adsorption. In order to overcome this problem, a method of biological removal with zeolite is used for simultaneous removal of ammonium and nitrate. As a result, in case of shaking culture with 1% seed and passing through zeolite column, the process revealed that ammonium ion could be removed completely after 14 hours. The removal of nitrate using columns with naturally adsorbed bacteria onto zeolite reached approximately 100% after 4 hours.

Evaluation of CIA(Conventional Intermittent Aeration) and MIA(Modified Intermittent Aeration) in Membrane Submerged Advanced Wastewater Treatment Process (멤브레인을 침지한 하수고도처리공법에서 기존간헐포기와 개량간헐포기의 효율성 비교평가)

  • Seo, In-Seok;Kim, Yeon-Kwon;Kim, Ji-Yeon;Kim, Hong-Suck;Kim, Byung-Goon;Choi, Chang-Gyu;Ahn, Hyo-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.257-264
    • /
    • 2006
  • In this study, the treatment of domestic wastewater in a field-scale membrane submerged intermittently aerated activated sludge process($210m^3/day$) was investigated under difference aeration methods. Operating temperature was 5.4 to 25.0 and membrane used in this study is a polyethylene hollow fiber membrane(pore size $0.4{\mu}m$). The range of operating flux was $9.7{\sim}24.4l/m^2-h$ and membrane permeates periodically operated for 7min followed idle for 3 min. The results showed that MIA(modified intermittent aeration) was more efficient in nitrogen and phosphorus removal. The removal efficiencies of T-N and T-P were 73.0% and 69.6% for CIA(conventional intermittent aeration) and 57.5%, 58.6% for MIA (modified intermittent aeration). With application of modified intermittent aeration, DO reached nearly Omg/l within 10 minutes after air off. Organics of influent could be entirely consumed to the denitrification and the P-release without the influence by remained DO in intermittent aeration reactor. Therefore, newly developed KSMBR(Kowaco-KMS-Ssangyoung Membrane Bio-Reactor) process with modified intermittent aeration can be one of the useful process for stable nitrogen and phosphorus removal.

Selective Catalytic Reduction (SCR) Technology Trend for the Removal of Nitrogen Oxide from Ship Flue Gas (선박 배가스 내 질소산화물 제거를 위한 선택적촉매환원법(SCR) 기술동향)

  • Won, Jong Min;Hong, Sung Chang
    • Prospectives of Industrial Chemistry
    • /
    • v.22 no.5
    • /
    • pp.25-40
    • /
    • 2019
  • 전 세계적으로 환경문제를 해결하기 위한 방안으로 환경규제를 강화시키며 특히 다양한 대기오염 물질 중 최근 큰 이슈인 초미세먼지 저감을 위해 전구물질로 알려진 질소산화물을 제어하기 위한 다양한 기술개발이 가속화되고 있다. 특히, 다양한 처리기술 중에 기술적·경제적인 이점을 갖춘 선택적 촉매환원법(selective catalytic reduction, SCR) 기술을 통하여 질소산화물 제거를 위해 암모니아를 환원제로 반응에 참여시켜 인체에 무해한 H2O, N2로 전환하는 기술이 대표적이다. 최근 전 세계적으로 다양한 산업군에서 질소산화물이 배출되고 있으며, 점오염원뿐만이 아니라 비점오염원(mobile sources)에 대한 규제가 강화되고 있다. 디젤엔진이 장착된 선박 배가스 처리장치 내 SCR 기술이 주목을 받고 있으며, NH3-SCR에 사용되는 촉매는 주로 VOx/TiO2, VOx/W/TiO2 촉매가 대표적이다. 한편 선박 디젤엔진에 사용되는 연료에 따라 연소배가스 특성이 다르다. 이러한 연료가 연소됨에 따라 SO2, SO3가 발생되고 환원제인 NH3와 결합하여 황산암모늄염((NH4)2SO4), ABS (ammonium bisulfate, NH4HSO4)과 같은 염을 형성시켜 탈질촉매의 비활성화 문제가 발생된다. 이러한 비활성화 물질이 침적된 탈질촉매를 재활성화 시키기 위하여 열 산화를 통해 재생시키고 있다. 이처럼 선박용 SCR 촉매는 강화되는 배출규제 및 엔진기술의 발달로 저감되는 운전 온도에 대비하여 저온 활성 재생이 가능한 고활성, 고내구성 촉매기술 개발이 필요하다.

Biogeochemical Studies on Tidal Flats in the Kyunggi Bay: Introduction (경기만 부근 갯벌의 생지화학적 연구: 서문)

  • Cho, B.C.;Choi, J.K.;Lee, T.S.;An, S.;Hyun, J.H.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Tidal flats have been regarded to carry out transformation and removal of land-derived organic matter, and this purifying capability of organic matter by tidal flats is one of very important reasons for their conservation. However, integral biogeochemical studies on production and decomposition of organic matter by benthic microbes in tidal flats have been absent in Korea, although the information is indispensable to quantification of the purifying capability. Our major goals in this multidisciplinary research were to understand major biogeochemical processes and rates mediated by diverse groups of microbes dominating material cycles in the tidal flats, and to assess the contribution of benthic microbes to removal of organic matter and nutrients in the tidal flats. Our study sites were Ganghwa and Incheon north-port tidal flats that had been regarded as naturally well reserved and organically polluted, respectively. Our research group measured over 3 years primary production, biomass and community structure of primary producers, abundance and production of bacteria, enzyme activities, distribution of protozoa and protozoan grazing rates, rates of denitrification and sulfate reduction, early sediment diagenesis, primary production and respiration based on oxygen microelectrode. We analyzed major features of each biogeochemical process and their interactions. The results are compiled in the following articles in this special issue: An (2005), Hwang and Cho (2005), Mok et at. (2005), Na and Lee (2005), Yang et at. (2005), and Yoo and Choi (2005).