• Title/Summary/Keyword: 탈리그닌

Search Result 18, Processing Time 0.018 seconds

Delignification Effect on Properties of Lignocellulose Nanofibers from Korean White Pine and Their Nanopapers (잣나무 유래 리그노셀룰로오스 나노섬유 및 나노종이 특성에 미치는 탈리그닌의 영향)

  • Jang, Jae-Hyuk;Lee, Seung-Hwan;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.9-16
    • /
    • 2015
  • This study was carried out to investigate the effect of delignification on properties of lignocellulose nanofibers (LCNFs) prepared by wet disk-milling (WDM) after steam and ozone oxidation pre-treatments and their nanopaper sheets. Delignification treatment was effective to obtain fine morphology with uniform fiber diameter less than 35 nm without aggregation, and increased the specific surface area (SSA) and filtration time of LCNFs. In particular, SSA and filtration time of the LCNFs prepared by WDM after ozone pretreatment increased 1.5 and 5.4 times after further delignification. Delignification also increased whiteness and decreased the redness of nanopaper sheets. The highest color difference (41.9) before and after the delignification was obtained in LCNFs prepared by WDM after the steam pretreatment. Tensile properties of nanopaper sheets were also increased by further delignification. The highest tensile strength was found to be 142 MPa.

Utilization of Pine Bark (Part 5) -Alkaline Sulfite-Anthraquinone Delignification of Pine Bark- (소나무 수피의 총합적 이용 (제5보) -소나무 수피의 알칼리성 아황산염-안트라퀴논에 의한 탈리그닌-)

  • Mun, Sung-Phil;Park, Sung-Chun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.46-52
    • /
    • 1999
  • Alkaline sulfite-anthraquinone(AQ) cooking was examined for their effectiveness in delignification of pine (Pinus densiflora S. et Z.) bark. Better delignification was achieved with alkaline sulfite liquor compared to monosulfite liquor, but the degree of delignification was less than 90% indicating need for improvement in cooking method, Remarkable increase in the rate of cooking and delignification was obtained by the simple addition of AQ to the alkaline sulfite cooking, Selectivity of delignification was also improved by the addition of AQ, Consequently, 90% of delignification was achieved with the addition of 0.2% AQ to the alkaline sulfite cooking. The selectivity of delignification was slightly affected by cooking temperature and NaOH concentration during alkaline sulfite-AQ cooking of the bark. The selectivity of delignification was highly affected by the concentration of $Na_2SO_3$, and the optimum concentration of $Na_2SO_3$ for the high delignification was 30% as $Na_2O$.

  • PDF

Effect of Different Delignification Degrees of Korean White Pine Wood on Fibrillation Efficiency and Tensile Properties of Nanopaper (잣나무의 탈리그닌 정도가 습식 해섬처리 효율 및 나노종이 인장 특성에 미치는 영향)

  • Park, Chan-Woo;Lee, Seo-Ho;Han, Song-Yi;Kim, Bo-Yeon;Jang, Jae-Hyuk;Kim, Nam-Hun;Lee, Seung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • In this study, the effect of delignification degree of Korean white pine wood on fibrillation efficiency by wet disk-milling (WDM) and the properties of thus-obtained microfibrillated cellulose (MFC) were investigated. The effect on the tensile properties of nanopaper was also investigated. The delignification degree was adjusted by repeating 'Wise' method using sodium chlorite and acetic acid. The increase in delignification degree improved fibrillation efficiency, showing the smaller nanofiber dimension at the shorter WDM time. The filtration time of MFC water suspension was increased by the increase of WDM cycles. Tensile strength and elastic modulus of the nanopaper were increased by increasing delignification degree and disk-milling cycles.

Characterization of Pretreatment by NaOH Leaching for Production of Bioethanol from Palm Waste (팜 부산물 활용 바이오 에탄올 생산을 위한 NaOH 전처리 공정의 특성)

  • Woo, Sang Sun;Park, Ji-Yeon;Na, Jong-Boon;Lee, Joon-Pyo;Lee, Jin-Suk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.106.1-106.1
    • /
    • 2010
  • 본 연구는 팜 부산물로부터 바이오 에탄올을 생산하는 전처리-당화-발효 공정의 첫 번째 단계인 전처리 공정에서 팜 부산물을 NaOH를 이용하여 효율적으로 전처리하고자 하였다. 암모니아 침지법과 NaOH 침출법을 비교한 결과 팜 부산물에 대해서는 암모니아 침지에 의한 탈리그닌 효과가 적으며 NaOH 전처리가 적합한 방법임을 알 수 있었다. 40-100 mesh 크기의 팜 부산물을 이용하여 반응온도(110, 130, $150^{\circ}C$), 반응시간(20, 40, 60분) 및 NaOH 농도(5%, 11%)의 변화에 따른 팜 부산물의 탈리그닌율과 글루코스 및 자일로스 회수율 간의 상호관계를 확인하였다. $150^{\circ}C$까지의 온도 조건에서 온도에 의한 자일로스의 분해는 일어나지 않는 것으로 확인되었다. 팜 부산물의 탈리그닌율은 시간이 증가할수록 증가하였으며, 높은 NaOH 농도에서 더 높은 것으로 나타났다. 그러나 글루코스 및 자일로스의 회수율은 높은 농도에서 낮게 나타났으며, 시간이 지날수록 감소하여 손실이 많은 것으로 나타났다. 따라서 NaOH 농도가 낮을수록 당 회수율은 높게 나타나지만, 탈리그닌율이 낮아 당화 효율이 떨어지므로 효소 당화 후에 최종 당 회수율이 높은 NaOH 농도 조건을 결정하여야 하겠다.

  • PDF

Studies on the Pollution-Free Pulping by Nitric Acid - Nitric Acid Pulping of Alkali-Pretreated Wood - (질산(窒酸)을 이용한 무공해(無公害)펄프 제조(製造)에 관한 연구(硏究) - 알카리 전처리재(前處理材)의 질산(窒酸)펄프화에 관하여 -)

  • Cho, Nam Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.61 no.1
    • /
    • pp.27-36
    • /
    • 1983
  • This study was performed to get the basic information on nitric acid pulping of beech wood. In order to reduce the consumption of nitric acid, alkali pretreated woods were applied to a nitric acid pulping process. It consisted of nitric acid treatment to a high residual lignin content and the subsequent delignification with alkali, required far less chemical than the single stage method. At the first stage of nitric pulping, pulp yield descreased with increasing cooking time and 3 percent of nitric acid was more effective on the delignification of wood than 1 or 2 percent. Alkali pretreatment of wood improved significantly the rate of delignification, and 79 percent of the pretreated yield was good enough for excellent delignification. The dissolution of carbohydrate (mainly xylose) was increased with increasing cooking time, especially at the second stage. It would be considered that carbonyl groups introduced to polysaccharides in wood by nitric acid oxidation caused the degradation of carbohydrates.

  • PDF

X-Ray Diffraction Study on the Cellulose Structures in Wood Cell Wall (X선 회절법을 이용한 목재세포벽중의 셀룰로오스의 구조해석)

  • 김남훈;이선호
    • Journal of Korea Foresty Energy
    • /
    • v.18 no.2
    • /
    • pp.62-69
    • /
    • 1999
  • Lignin in wood cell walls influeced the transformation of the cellulose crystal structure during mercerization. Samples of sound and decayed woods by white rot fungus of Quercus mongolica were treated with 20% aquous NaOH solution, followed by washing and drying, and delignified. The effect of delignification on cellulose structure was investigated by a series of an X-ray diffraction analysis and ultraviolet(UV) microscopy. Delignification of alkali-treated woods did not influence their cellulose crystal structures. It may be concluded that lignin prevents the swelling of wood cellulose during mercerization and restrain the intermingling of cellulose chains.

  • PDF

On Possible Application of Microorganism for Chemical Pulping (화학(化學)펄프 제조(製造)에 미생물(微生物)의 응용(應用) 가능성(可能性))

  • Lee, Seon-Ho;Yoon, Byong-Ho;Lee, Won-Yong
    • Journal of Forest and Environmental Science
    • /
    • v.13 no.1
    • /
    • pp.143-152
    • /
    • 1997
  • The decayed wood by Fomes pini (Thore) Lloyd required a smaller H factor than the sound wood for pulping to permanganate number 20. The H factors for the decayed wood pulping by the kraft and soda processes were reduced by 15% and 17%, respectively, in the presence of 1% anthraquinone. The wood components degraded by fungi are normally more readily solubilized in alkali than the corresponding components in sound wood. The nonphenolic ${\beta}$-O-4 type lignin model compound, veratrylglycerol-${\beta}$-guaiacyl ether(I), and phenolic model compound, syringylglycerol-${\beta}$-syringyl ether(III), were degraded by the white-rot fungi to yield ${\alpha}$-guaiacoxy-${\beta}$-hydroxypropioveratrone(II) from the former and ${\alpha}$-syringyloxy-${\beta}$-hydroxypropiosyringone(IV) from the latter. Structures of the degradation products indicated that C ${\alpha}$-oxidation could occur with white-rot fungi. It has been shown that the alkaline cleavage of ${\beta}$-aryl ether bonds in the lignin units is accelerated by the presence of ${\alpha}$-carbonyl groups.

  • PDF

Microbial Conversion of Woody Waste into Sugars and Feedstuff (II) - Production of Cellulolytic Enzymes from Aspergillus fumigatus and Saccharification of Popla Wood (미생물(微生物)에 의한 목질자원(木質資源)의 당화(糖化) 및 사료화(飼料化)에 관(關)한 연구(硏究) (II) - Aspergillus fumigatus KC-1으로부터 섬유소 분해 효소의 생산 및 현사시나무의 효소가수분해)

  • Chung, Ki-Chul;Huh, Jeong-Weon;Myung, Kyu-Ho;Kim, Yoon-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.18-25
    • /
    • 1987
  • The cellulolytic activities of Aspergillus fumigatus KC-1 was investigated, which showed the most active producer of cellulase among the 256 strains of cellulose-decomposing microorganisms screened in our laboratory. All the examined cellulolytic activities (filter paper-, Avicel-, cotton-, CMC-, salicin- and xylansaccharifying activity) in a culture of A. fumigatus KC-1 grown on 1% popular sawdust pretreated with peroxide alkaline reached a maximum within 4-5 days. The optimum pH and temperature for the enzymatic activity was found to be pH 4.5 and $60^{\circ}C$ respectively. The sawdust of poplar wood delignified with 1% NaOH and 20% peracetic acid succesively recorded the highest hydrolysis rate in the tests of enzymatic saccharification. The major end product of hydrolysis of poplar wood with the cellulolytic enzymes obtained from A. fumigatus KC-1 was glucose with small amount of cellobiose and xylose. It can be concluded from these results that A. fumigatus KC-1 is an advantagous source of a cellulase that is capable of hydrolyzing cellulose to glucose rapidly. The influence of degree of delignification, substrate size and its concentration on the rate of hydrolysis of poplar wood was also discussed.

  • PDF

Utilization of Ligno-cellulosic Biomass(III)-Acid Hydrolysis of Exploded Wood after Delignification (목질계 바이오매스의 이용(제3보)-탈리그닌 처리한 폭쇄재의 산가수분해-)

  • 양재경;장준복;임부국;이종윤
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.4
    • /
    • pp.18-27
    • /
    • 1997
  • This study was performed to obtained the optimal delignified condition of exploded wood on the acid hydrolysis with sulfuric acid. Wood chips of pine wood(Pinus desiflora), oak wood(Quercus serrata) and birch wood (Betula platyphylla var. japonica) were treated with a high pressure steam (20-30kgf/$\textrm{cm}^2$, 2-6 minutes). The exploded wood was delignified with sodium hydroxide and sodium chlorite, and then hydrolyzed with sulfuric acid. The result can be summerized as follows ; In the exploded wood treated with sodium hydroxide, the optimal concentration of sodium hydroxide was 1% as content of lignin in the exploded wood. Lignin content of exploded wood treated with sodium chlorite was lower then that sodium hydroxide. The maximum reducing sugar yield of exploded wood treated with 1% sodium hydroxide was lower than non-treated exploded wood. In the case of sodium chlorite treated, the maximum reducing sugar yield was hgher than non-treated exploded wood. Sugar composition of acid hydrolysis solution was composed of xylose and glucose residue, and the rate of glucose residue was increased in high pressure condition.

  • PDF

Preparation of Cellulose Nanofibers from Domestic Plantation Resources (국내 자생 식물자원을 이용한 셀룰로오스 나노섬유의 제조 기술 개발)

  • Jang, Jae-Hyuk;Kwon, Gu-Joong;Kim, Jong-Ho;Kwon, Sung-Min;Yoon, Seung-Lak;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.156-163
    • /
    • 2012
  • This research has been carried out to investigate the characteristics of cellulose nanofibers manufactured from domestic lignocellulosic materials by mechanical grinding method. The continuous grinding process was effective for loosening cell wall structure, with increasing grinding time, much smaller nanofibers were observed. Filtration time was linearly increased with increasing grinding time for all experimental materials. Relative crystallinity of cellulose was not changed by grinding process, but increased by delignification treatment. Tensile property of fiber sheets was drastically improved with increasing grinding time. Fibers sheets obtained from delignified cone stalks showed an excellent tensile strength. Consequently, it is considered that this study presented some effective information for manufacturing cellulose nanofibers with domestic plantation resources.