• Title/Summary/Keyword: 탄소 용해도

Search Result 1,264, Processing Time 0.032 seconds

Selective Recovery of Platinum Group Metals by Solvent Extraction and Electrolysis in Non-aqueous Solution Based on Ionic Liquids (이온성액체 기반 비수계 용액에서 용매추출과 전해에 의한 백금족 금속의 분리회수)

  • Park, Gwang-won;Park, Jesik;Lee, Churl Kyoung
    • Resources Recycling
    • /
    • v.28 no.2
    • /
    • pp.46-53
    • /
    • 2019
  • In this study, the extraction and reduction behavior of platinum group metals in a non-aqueous solvent based on ionic liquids was investigated in order to confirm a new extraction technology of platinum group metals. Platinum was selectively extracted using an ionic liquid $[C_4mim]PF_6$ from a mixed solution of $PdCl_2$, $PtCl_4$ and $RhCl_3$ dissolved with concentration ratio of 10:1:0.5 M. After stripping of the metals by 1 M $HNO_3$ solution, the platinum was preferentially reduced by aqueous electrolysis on gold electrode at -0.8 V (vs. Pt-QRE). The residual palladium and rhodium were transferred to ionic liquid of $[C_4mim]Cl$. The metallic palladium and rhodium could be sequentially reduced on gold and STS304 as working electrodes by non-aqueous electrolysis, respectively.

Preparation and Properties of Polyurethanes Containing Polycarbonate Polyol/Bio Polyol for Wet Type Artificial Leather (폴리카보네이트 폴리올/바이오 폴리올을 이용한 습식 인조피혁용 폴리우레탄의 제조 및 물성)

  • Sur, Suk-Hun;Ko, Jae-Wang;Choi, Pil-Jun;Lee, Jae-Yeon;Lee, Young-Hee;Kim, Han-Do
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.114-122
    • /
    • 2019
  • The synthesis of bio polyol from renewable resources has attracted attention in recent years. In particular, it is important to take advantage of bio polyols in the synthesis of polymers. In this study, a series of dimethylformamide (DMF) based polyurethanes were synthesized using polycarbonate polyol/bio polyol (PO3G: polytrimethylene ether glycol prepared from 1, 3-propanediol produced by fermentation from corn sugar), methylene diphenyl diisocyanate (MDI) and 1,4-butandiol (BD). The properties of prepared polyurethane films and the cell structure of wet type artificial leather were investigated. As the bio polyol content increased, the tensile strength of polyurethane films decreased, however, the elongation at break increased significantly. As a result of thermal characteristics analysis, the glass transition temperature of polyurethanes increased when increasing the content of polycarbonate polyol. As a result of comparing the cell characteristics of wet type artificial leathers prepared in this study, it was found that the number and uniformity of cells formed in the artificial leather samples increased when increasing the content of polycarbonate polyol in polycarbonate polyol/bio polyol. From these results, it was found that DMF-based polyurethane containing an appropriate amount of bio polyol could be used for wet type artificial leather. The bio textile analysis system according to ASTM standard was used to measure the bio carbon content of polyurethane. The content of bio carbon increased proportionally with the increase of bio polyol content used in polyurethane synthesis.

Study on the Discoloration Identified from the Column of Wooden house, Hyunchungsa(Shrine) - Focused on Influence of Microorganisms and Correlation with Strength - (현충사 옛집의 기둥 하부 변색에 관한 연구 - 미생물에 의한 영향 및 강도와의 상관관계를 중심으로 -)

  • Jeong, So-young;Seo, Min-seok;Hong, Jin-young;Kim, Soo-ji;Jeong, Ah-ruem;Kim, Ji-seo
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.4
    • /
    • pp.58-73
    • /
    • 2014
  • In general, it is thought discoloration on wood is frequently found in decorative wood products. So this study was conducted focusing on white rot found lower parts of columns and baseboards of a wooden house, Hyunchungsa (shrine) to know whether microorganisms have any influence on discoloration or there is correlation with strength by investigating resistograph, occurrence of microorganisms and microscopy for analysis(SEM, tissue analysis etc.). The results obtained were as follows: (1) The result of measurement of resistograph showed there are little correlation between discoloration and strength though there was a spot indicating low resistance. (2) The moisture content of discolored part was relatively higher than that of normal parts, but occurrence of microorganisms was less in discolored parts while more kinds of microorganisms were identified in normal parts with high CFU(Colony Forming Unit). (3) The result of SEM (with a magnification of 500 times) on the surface of discolored parts, it was found out there are many kinds of particles in different sizes on the surface and those were composed of elements such as C, O, Si, Ca, and a small amount of Na and Cl (weight %) were detected in part. (4) The result of tissue analysis showed discoloration occurs limitedly to the outer surface of column. As these results, it is concluded that discoloration has nothing to do with strength, damage by microorganisms and salt.

High Thermal Conductivity h-BN/PVA Composite Films for High Power Electronic Packaging Substrate (고출력 전자 패키지 기판용 고열전도 h-BN/PVA 복합필름)

  • Lee, Seong Tae;Kim, Chi Heon;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.95-99
    • /
    • 2018
  • High thermal conductivity films with electrically insulating properties have a great potential for the effective heat transfer as substrate and thermal interface materials in high density and high power electronic packages. There have been lots of studies to achieve high thermal conductivity composites using high thermal conductivity fillers such alumina, aluminum nitride, boron nitride, CNT and graphene, recently. Among them, hexagonal-boron nitride (h-BN) nano-sheet is a promising candidate for high thermal conductivity with electrically insulating filler material. This work presents an enhanced heat transfer properties of ceramic/polymer composite films using h-BN nano-sheets and PVA polymer resins. The h-BN nano-sheets were prepared by a mechanical exfoliation of h-BN flakes using organic media and subsequent ultrasonic treatment. High thermal conductivities over $2.8W/m{\cdot}K$ for transverse and $10W/m{\cdot}K$ for in-plane direction of the cast films were achieved for casted h-BN/PVA composite films. Further improvement of thermal conductivity up to $13.5W/m{\cdot}K$ at in-plane mode was achieved by applying uniaxial compression at the temperature above glass transition of PVA to enhance the alignment of the h-BN nano-sheets.

A Study on Design of Wind Blade with Rated Capacity of 50kW (50kW 풍력블레이드 설계에 관한 연구)

  • Kim, Sang-Man;Moon, Chae-Joo;Jung, Gweon-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.485-492
    • /
    • 2021
  • The wind turbines with a rated capacity of 50kW or less are generally considered as small class. Small wind turbines are an attractive alternative for off-grid power system and electric home appliances, both as stand-alone application and in combination with other energy technologies such as energy storage system, photovoltaic, small hydro or diesel engines. The research objective is to develop the 50kW scale wind turbine blades in ways that resemble as closely as possible with the construction and methods of utility scale turbine blade manufacturing. The mold process based on wooden form is employed to create a hollow, multi-piece, lightweight design using carbon fiber and fiberglass with an epoxy based resin. A hand layup prototyping method is developed using high density foam molds that allows short cycle time between design iterations of aerodynamic platforms. A production process of five blades is manufactured and key components of the blade are tested by IEC 61400-23 to verify the appropriateness of the design. Also, wind system with developed blades is tested by IEC 61400-12 to verify the performance characteristics. The results of blade and turbine system test showed the available design conditions for commercial operation.

Development of Voltammetric Nanobio-incorporated Analytical Method for Protein Biomarker Specific to Early Diagnosis of Lung Cancer (폐암 조기 진단을 위한 단백질 바이오마커 측정용 전압-전류법 기반의 나노바이오 분석법 개발)

  • Li, Jingjing;Si, Yunpei;Nde, Dieudonne Tanue;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.461-466
    • /
    • 2021
  • In this article, a portable and cost-effective voltammetric biosensor with nanoparticles was developed for the measurements of heterogeneous nuclear ribonucleoprotein A1 protein (hnRNP A1) biomarker which can potentially be used for lung cancer diagnosis. Gold nanoparticles were first electrodeposited onto screen printed carbon electrode (SPCE) followed by immobilizing a single stranded DNA aptamer specific to hnRNP A1 onto the electrode surface. Ethanolamine was also used when immobilizing DNA aptamer on the surface to prevent signals from non-specific adsorption events. Sequential injection of hnRNP A1 biomarker and anti-hnRNP A1 conjugated with alkaline phosphatase (ALP) onto the aptamer chip surface allows to form the sandwich complex of DNA aptamer/hnRNP A1/ALP-anti-hnRNP A1 on the electrode surface which further reacted with 4-aminophenyl phosphate (APP). The electrocatalytic reaction of the enzyme, ALP, and the substrate, APP, resulting in the oxidative current response changes at -0.05 and -0.17 V (vs. Ag/AgCl) against the hnRNP A1 concentration was measured using cyclic and differential pulse voltammetry, respectively. The Au nanoparticles-integrated voltammetric biosensor was applied to analyze human normal serum solutions possibly suggesting potential applicability for lung cancer diagnosis.

A Study on the Synthesis and Electrochemical Characteristics of Carbonized Coffee Powder for Use as a Lithium-Ion Battery Anode (리튬 이온 이차전지 음극 활물질용 탄화 커피 분말 제조 및 전기화학적인 특성연구)

  • Kim, Tae Gyun;Cho, Jin Hyuk;Pham-Cong, De;Jeon, Injun;Hwang, Jin Hyun;Kim, Kyoung Hwa;Cho, Chae Ryong
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1315-1323
    • /
    • 2018
  • We studied the carbonization due to the annealing condition of waste coffee powder for application as an active anode material for lithium-ion batteries (LIBs). The coffee powder used as an active anode material for LIBs was obtained from coffee beans, not from a coffee shells. The waste coffee powder was dried in air and heat-treated in an $Ar/H_2$ atmosphere to obtain a pore-forming activated carbon powder. The specific capacity of the sample annealed at $700^{\circ}C$ was still 303 mAh/g after 1000 cycles at a current density of 1000 mA/g and with a coulombic efficiency of over 99.5%. The number of pores and the pore size of the waste coffee powder were increased due to chemical treatment with KOH, which had the some effect as an increased specific surface area. The waste coffee powder is considered to be a very promising active anode material because of both its excellent electrochemical properties due to enhanced carrier conduction and its being a cost effective resource for use in LIBs.

Growth and storage characterisitics of fruiting body by nitrogen content of sawdust media and restriction stage temperature during flammulina velutipes cultivation (팽이버섯 재배시 배지 질소함량 및 억제기 온도에 따른 자실체의 생육 및 저장 특성)

  • Kim, Dami;Kim, Kil-Ja;Kim, Seon-Gon;Park, Hye-Sung
    • Journal of Mushroom
    • /
    • v.18 no.4
    • /
    • pp.311-316
    • /
    • 2020
  • The effect of the nitrogen content of sawdust medium (1.2~1.8%) and the restriction stage temperature (2, 4, and 6℃) on the growth and storage characteristics of Flammulina velutipes (winter mushroom) were investigated. With increased nitrogen content, the growth days shortened and the yield of the fruiting body increased. The effect of restriction temperature on the growth of the fruiting body differed depending on the nitrogen content. No difference in restriction temperature was evident for T1 with a low nitrogen content of 1.28%. In medium with a nitrogen content ≥1.55%, the yield and length of the pileus and stipe increased as the restriction temperature decreased. The weight loss ratio according to the storage period did not change according to the nitrogen content in the medium. A low weight loss ratio of 1.50 to 1.93% was observed at a restriction temperature <4℃. When T3 with high nitrogen content in the medium was treated at a restriction temperature of 4℃, the fruiting body color values after 31 days of storage were 84.81 (L) and 6.3 (ΔE). This color change was minute compared to that after other treatments. The sensory characteristics score was 5.2 after 31 days of storage, and the quality remained acceptable for consumption.

Enzyme-Free Glucose Sensing with Polyaniline-Decorated Flexible CNT Fiber Electrode (Polyaniline을 이용한 CNT fiber 유연 전극 기반의 비효소적 글루코스 검출)

  • Song, Min-Jung
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • As the demand for wearable devices increases, many studies have been studied on the development of flexible electrode materials recently. In particular, the development of high-performance flexible electrode materials is very important for wearable sensors for healthcare because it is necessary to continuously monitor and accurately detect body information such as body temperature, heart rate, blood glucose, and oxygen concentration in real time. In this study, we fabricated the nonenzymatic glucose sensor based on polyaniline/carbon nanotube fiber (PANI/CNT fiber) electrode. PANI layer was synthesized on the flexible CNT fiber electrode through electrochemical polymerization process in order to improve the performance of a flexible CNT fiber based electrode material. Surface morphology of the PANI/CNT fiber electrode was observed by scanning electron microscopy. And its electrochemical characteristics were investigated by chronoamperometry, cyclic voltammetry, electrochemical impedance spectroscopy. Compared to bare CNT fiber electrode, this PANI/CNT fiber electrode exhibited small electron transfer resistance, low peak separation potential and large surface area, resulting in enhanced sensing properties for glucose such as wide linear range (0.024~0.39 and 1.56~50 mM), high sensitivity (52.91 and 2.24 ㎂/mM·cm2), low detection limit (2 μM) and good selectivity. Therefore, it is expected that it will be possible to develop high performance CNT fiber based flexible electrode materials using various nanomaterials.

Characteristics and Restoration Strategies of Warm-Temperate Forests Vegetation Types in Island Area on the Korean Peninsula (한반도 도서지역의 난온대림 식생유형 특징 및 복원전략)

  • Kang, Hyun-Mi;Kang, Ji-Woo;Sung, Chan-Yong;Park, Seok-Gon
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.5
    • /
    • pp.507-524
    • /
    • 2022
  • In this study, we revealed the location environment and community structural characteristics after extensively investigating Korea's warm-temperate island areas and categorizing vegetation through TWINSPAN analysis. Based on it, this study aims to suggest the direction of the vegetation restoration plan for warm-temperate forests by deriving a restoration strategy for each vegetation type. The vegetation types were clearly divided into eight types, and communities I through IV were good evergreen broad-leaved forests dominated by Machilus thunbergii and Castanopsis sieboldii. On the other hand, communities V through VIII were Pinus thunbergii forest, deciduous broad-leaved forest, and artificial forest, and retrogressive succession vegetation in the warm-temperate areas. The environmental factors derived from the DCA analysis were altitude (average temperature of the coldest month) and distance from the coastline (salt tolerance). The distribution pattern of warm-temperate forests has been categorized into M. thunbergii, C. sieboldii and Cyclobalanopsis spp. forest types according to the two environmental factors. It is reasonable to apply the three vegetation types as restoration target vegetation considering the location environment of the restoration target site. In communities V through VIII, P. thunbergiiand deciduous broad-leaved formed a canopy layer, and evergreen broad-leaved species with strong seed expansion frequently appeared in the ground layer, raising the possibility of vegetation succession as evergreen broad-leaved forests. The devastated land where forests have disappeared in the island areas is narrow, but vegetation such as P. thunbergii and deciduous broad-leaved forests, which have become a retrogressive succession, forms a large area. The restoration strategy of renewing this area into evergreen, broad-leaved forests should be more effective in realizing carbon neutrality and promoting biodiversity.